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Abstract

Advances in GPU architecture have made efficient implementations of hash

tables possible, allowing fast parallel constructions and retrievals despite the un-

coalesced memory accesses naturally incurred by hashing algorithms. The key is

to mitigate the penalty of these accesses by minimizing the number that occur and

utilizing the cache (when one is available). Most work done on parallel hashing is

ill-equipped for this objective and relies on the theoretical PRAM model, which

abstracts away the difficulties of programming on actual hardware. We examine

hashing schemes from a practical perspective using NVIDIA’s CUDA architecture.

Our main contribution is a set of parallel implementations for open addressing,

chaining, and cuckoo hashing. We analyze each method and identify when appli-

cations should use one over another. Because each makes different performance

trade-offs, we compare them using three metrics: memory usage, construction time,

and retrieval efficiency. Retrieval efficiency considers both the average time and

deviation from it, since answering some queries can be several orders of magnitude

more difficult than others.

Our quadratic probing implementation shows this as the hash table becomes

more compact: on a GTX 470, using datasets containing 10M random key-value

pairs, it has respective rates of [369M, 723M, 539M] pairs per second (pps) for

insertion, retrieving every input item, and retrieving 10M keys absent from the

table when using 2N space. For 1.05N space, these rates significantly drop to

[162M, 208M, 46M] pps, reflecting the difficulty of terminating both insertions and

queries.

Applications requiring more robust retrieval could benefit from our chaining

implementation, which eschews linked lists and uses radix sort for an efficient

parallel construction. When using 2N space, the rates are [344M, 436M, 624M]

pps, while for 1.05N the rates are [449M, 211M, 126M] pps. For compact tables,

its construction rate is almost 3x faster than quadratic probing with a smaller drop

in retrieval efficiency for failed queries.
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However, the number of probes required to answer queries grows drastically for

compact tables, leading to poorer retrieval rates. Cuckoo hashing is better suited

for these cases, trading a more complicated construction for guaranteed constant

time retrievals. It has rates of [366M, 670M, 501M] pps using 2N space and [133M,

386M, 258M] pps for 1.05N . Our method is also adaptable and can be specialized

for situations where multiple values are stored per key.
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Chapter 1

Introduction

The advent of programmable rendering pipelines for Graphics Processing Units

(GPUs) was a boon for computer graphics, allowing shader programs to reconfig-

ure how the GPU processed data and rendered images for display. Before long,

the highly parallel architecture of the GPU was recognized for its extremely fast

number crunching abilities, giving rise to techniques for applying the GPU to

non-graphical computations. However, these methods were relatively unintuitive:

they required shoehorning data into textures and operating on them using shaders

that didn’t actually produce pixels for display. Since the introduction of parallel

programming architectures that remove the need for these workarounds, the popu-

larity of the GPU has expanded to applications completely unrelated to computer

science, like biology, chemistry, and even finance.

These applications build upon and rely on data structures that can be both built

and used efficiently in parallel environments. Ideally, the data structures would be

constructed on the GPU itself using an efficient parallel method to avoid being the

bottleneck for a parallel application. Several such algorithms were recently demon-

strated by researchers for hierarchical spatial data structures, like octrees [8,40,42]

and k-d trees [43] that can be used for real-time raytracing. In general, however,

the problem of defining parallel-friendly data structures that can be efficiently cre-

ated, updated, and accessed is a significant research challenge [25], and the toolbox

of efficient data structures and their associated algorithms on scalar architectures
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Figure 1.1. Typical sparse spatial dataset. Pictured on the left is a voxelized
version of the Lucy model, color-coded so that red, green, and blue map to the
x, y, and z coordinates of each voxel. Storing the entire voxel grid is extremely
wasteful since the majority of the cells are empty (right).

like the CPU remains significantly larger than on parallel architectures like the

GPU.

We focus on compact data structures that provide efficient random-access to

data pulled from a sparse universe. One example of this type of data is the set of

voxels of a grid occupied by a surface mesh; Figure 1.1 shows an example of the

Lucy dataset1 embedded in a voxel grid. The number of occupied voxels is often

expected to be O(N2); storing the entire N3 grid is extremely wasteful because

the majority of the grid is empty. A more practical option is to store only the

occupied voxels: querying the data structure with a voxel ID either returns a value

associated with the voxel or fails, indicating that the voxel was empty.

Hash tables are popular for this type of data because they can be constructed

to answer queries with an average of O(1) memory accesses; other basic data struc-

tures like sorted arrays or linked lists require O(lgN) or O(N) memory accesses,

respectively. Applications using these “spatial hash tables” include volumetric

painting [23] and collision detection between deforming models [2]; an example of

the latter is shown in Figure 1.22.

1Provided by the Stanford 3D Scanning Repository.
2Thanks to Daniel Vlasic for providing the models.
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Figure 1.2. GPU hash tables are being constructed and queried every frame to
perform Boolean intersections for these two animated models. Blue parts of one
model represent voxels inside the other model, while green parts mark surface
intersections. These images were produced using a 1283 voxel grid for point
clouds of approximately 160k points. We achieve frame rates between 25–29 fps
on a GTX 280, with the actual computation of the intersection and flood-fill
requiring between 15–19 ms. Most of the time per frame is devoted to actual
rendering of the meshes.

A B
0 1 2 3 4 5 6 7 8 9

C
10 11 12 13 14 15

0 A 4 B12 C
h(0)h(12) h(4)

Figure 1.3. While allocating storage for the value of every possible key in an
array allows directly indexing into the structure, it is wasteful when the array
is mostly unused (top). A hash table can be used instead, which allocates far
less space than the array (bottom). In this example, each slot holds both a key
and its value. The table is indexed into using a hash function h(k). Because
multiple keys may map to the same location, the key contained in the slot and
the query key are compared on a retrieval to ensure the right value is returned.
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A basic hash table consists of a set of slots that is slightly larger than the size

of the input data (Figure 1.3). Every possible item from the universe is mapped

to one of these slots by a hash function, but each location can have multiple

items mapping into it because the number of slots is significantly smaller than

the size of the universe. When two or more input items map to the same slot, a

collision occurs. Traditional collision-resolution methods include open addressing,

which marches through the hash table until an empty slot is found, and chaining,

which keeps separate linked lists of all items falling into each slot. Although these

methods can be effective in a serial environment, they must be adapted for the

highly parallel GPU:

• Serialization is difficult to avoid during parallel insertion, but is required to

prevent race conditions. For example, two threads attempting to insert into

the same slot simultaneously could overwrite each other’s insertion without

a lock or atomic operation.

• Memory accesses are slow when they cannot be coalesced, or grouped to-

gether; uncoalesced memory accesses are an order of magnitude slower than

coalesced accesses. Threads must access nearby locations in memory for co-

alescing to occur, but hash tables exhibit little locality in either construction

or access: they achieve O(1) retrievals by using randomness to scatter items

throughout the table. Moreover, the scattering limits the effectiveness of the

cache on modern GPUs.

• Many probes may be required to find an item in the hash table, which

can increase with more tightly packed hash tables. This leads to some inef-

ficiency on the GPU, where the SIMD cores force all threads to wait for the

worst-case number of probes. Chaining, for example, partitions the items

into variably-sized buckets and has an expected constant look-up time, but

the lookup time for some item in the table is Ω(lg lgN) with high probability.
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Relatively little work has focused on practical parallel implementations of hash

tables to address these issues. The influential work of Lefebvre and Hoppe [23],

among the first to use the GPU to access a hash table, addressed the issue of

variable probe length by using a collision-free hash table. This guarantees that an

item can be accessed in worst-case O(1) time, limiting the number of probes and

memory accesses required to answer a query. The trade-off for this efficient retrieval

is an inherently serial construction algorithm that is performed as a preprocessing

step on the CPU, resulting in slow build times and limiting their applications to

static data sets.

In this dissertation, we explore the difficulties of building hash tables on the

GPU itself to reduce serialization of parallel applications. We aim for parallel-

friendly construction methods that allow hash tables containing millions of items

to be built at rates fast enough for interactive applications, while still providing

efficient random access to their contents. Our contribution is a set of four different

parallel hash table implementations, each of which can be built and queried on

the GPU. We analyze the strengths and weaknesses of each method, discuss the

trade-offs that can be made to change how they perform, and examine situations

where each outperforms the other.

We begin in Chapter 2 with a brief overview of GPU programming and con-

siderations that must be made for efficient use of the hardware. The chapter also

covers previous work on parallel hash tables and general GPU data structures and

describes our criteria for judging parallel hash table implementations. Chapter 3

describes and analyzes our implementations of the common open addressing meth-

ods, while Chapter 4 explores our chaining algorithm. Chapters 5 and 6 discuss our

implementations of cuckoo hashing, which address issues with retrieval efficiency

faced by the other methods. Chapter 7 concludes with thoughts about future

directions.
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Chapter 2

Background

To better understand our algorithms, this chapter goes over background material

required to frame our discussion. Section 2.1 gives a brief overview of general-

purpose computing using GPUs. We exclusively use NVIDIA’s CUDA parallel

computing architecture, though the ideas we describe can also be applied using

OpenCL, a similar but less-adopted framework. Section 2.2 discusses previous

work on GPU data structures, as well as relevant work on hash tables. We close

with Section 2.3, which outlines how we judge the performance of hash tables we

explore in later chapters.

2.1 Parallel computing using CUDA

The introduction of parallel programming architectures like CUDA lowered the

barrier to entry for general-purpose computing on GPUs. These computing frame-

works provide essential functionality for parallel applications, such as scattered

writes in memory and atomic operations, that were simply not available using

previous methods. We briefly introduce the features of CUDA relevant to our

hashing work in this section; those interested in a full guide to CUDA program-

ming should read NVIDIA’s extensive guide [33]. Specifically, we use CUDA C, a

high-level GPU programming language that extends C with extra constructs for

dealing with the hardware.
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Programs run on the GPU are called kernels and typically consist of just a

few small functions. Kernels are executed in parallel by threads, each perform-

ing the same set of instructions on different data. Simple examples include pro-

grams that apply the same affine transformation to every input point, or compute

the hash function value of every input key. While this model is more restrictive

than the “Multiple-Instruction, Multiple-Data” model used by CPUs, which allow

threads to operate independently and perform completely different tasks, the lack

of flexibility allows the hardware to be highly optimized for data-parallel tasks and

throughput.

One of the biggest limitations is that copying data to and from the GPU is

very expensive. Kernels generally do not have access to the host system’s memory,

so data has to be copied onto the GPU before processing it and written back

afterward. Parallel applications can avoid repeatedly incurring this expensive data

transfer by using data structures that can be built and used entirely in parallel,

allowing the data to stay on the GPU while it is processed.

Threads are grouped together into thread blocks of up to 512 threads, which

are assigned to different streaming multiprocessors (SM s) for execution. Because

literally millions of threads can execute the kernel and only a finite number of

SMs exist, the thread blocks are queued up for the SMs and fed in as the thread

blocks finish; thread blocks can complete execution before others are even started,

so there is no way to globally synchronize all of the threads without finishing

the kernel. Threads in the same block can, however, locally synchronize using

execution barriers, guaranteeing that they have all reached the same point before

continuing.

Multiple thread blocks can be handled by an SM simultaneously, but there is

a hard limit on the number of threads the SM can handle and the threads must

partition the resources available to each SM; among these are a set of fast registers

accessible only by each thread, and a low-latency (but small) on-chip memory that

can be accessed by threads in the same block.



8

Each SM breaks its thread blocks into groups of 32 consecutive threads called

warps. SMs manage and schedule when each of their warps will be executed by

their SIMD cores, with each thread running the same instructions in lockstep –

even when a branch occurs. If any threads in the warp fail to take the same branch

as all of the other threads, the instructions for all of the branches are executed

(though the results are not stored if the branch would not have been taken). These

divergent branches cause some performance degradation, and should be avoided

when possible. By extension, threads in the same warp also perform memory

accesses together; when two or more threads simultaneously write to the same

location, CUDA guarantees that one arbitrary thread will succeed.

There are two main types of memory that we are concerned with: low-latency

shared memory and high-latency global memory. Shared memory is typically used

as a cache for global memory and as a scratchpad for threads working in the same

thread block, allowing them to cheaply communicate and work together to process

larger batches of data. Accessing it can be as fast as using registers with certain

memory access patterns. However, it is small (typically 16KB) and partitioned

so that threads from different blocks are unable to access another block’s shared

memory. Moreover, it does not persist between kernel executions, so results must

be output to global memory.

Global memory is abundant and accessible to all threads, but is orders of mag-

nitude slower to access. To hide the latency, SMs automatically context switch to

other warps while the memory transactions are being performed. They are more

able to do so when they have a high occupancy and are free to switch between as

many warps as needed while waiting for other warps.

SMs further hide latency by reading up to 128-byte segments of memory with

a single transaction. Although the requirements change with every generation of

GPUs, in general the memory requests of threads in a warp accessing the same

segment of memory are coalesced, or combined, together into fewer memory trans-

actions. Threads failing to satisfy the requirements incur separate transactions.
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For example, if 16 threads are attempting to access memory locations that are

distant from one another, 16 separate memory transactions have to be performed.

This creates a huge bottleneck for parallel applications and is especially damaging

for hash tables, since by nature they exhibit very little spatial locality. Reducing

the number of these uncoalesced accesses is therefore a high priority.

For situations where race conditions are difficult or impossible to avoid, atomic

operations can be performed on both shared and global memory. Atomics perform

a series of actions that cannot be interrupted; examples include incrementing a

counter and conditionally setting a memory location based on its current value.

These operations are extremely helpful for threads in different thread blocks com-

municating with each other. However, they are costlier than a normal memory

access, especially when many threads are performing the same atomic operation

on the same memory location.

Newer GPUs from NVIDIA are based on the Fermi architecture, which intro-

duces significant changes to how applications perform [32]; these cards have higher

compute capabilities, signifying that they have more functionality than previous

generations of cards. Among the changes are more efficient atomic operations and

a cached memory hierarchy to further reduce latency when accessing global mem-

ory. Each streaming multiprocessor now has access to its own small L1 cache,

as well as a larger, L2 cache shared between all of the SMs. These caches can

be helpful for hashing methods like linear probing, where a thread may have to

probe sequential locations in memory to answer queries, and result in different

disadvantages for the hash tables when built on different GPUs.

2.2 Related work

We break this section into two pieces, beginning with a brief review of work on

GPU data structures, then discuss work on hash tables.
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2.2.1 GPU data structures

The majority of work on GPU data structures are for structures that are produced

on the CPU as a pre-processing step, but used on the GPU to accelerate parallel

applications. More recent work has focused on producing these data structures on

the GPU directly using parallel construction algorithms.

The GLIFT library of Lefohn et al. [24] allows a method for generating mul-

tiresolution adaptive data structures that can be updated. These can be used

to generate quadtrees and octrees, which are sparse spatial data structures that

partition space into increasingly smaller boxes [8, 40]. One application is to con-

vert oriented point cloud data into surface meshes; Zhou et al. [42] build their

octrees on the GPU at fast enough rates to allow interactive surface creation and

deformation.

KD-trees also partition space, but do so using a hierarchy of axis-aligned split-

ting planes. Previous work has relied on building the kd-tree on the CPU side,

then using it on the GPU to accelerate nearest neighbor queries and raytracing

operations [12, 21]. However, the recent work of Zhou et al. [43] constructs the

KD-trees at interactive rates on the GPU, allowing for a raytracing application

with dynamic scene geometry where the kd-tree is built for each frame.

Sorted arrays are a popular focus of research. Most work has focused on pro-

ducing faster and faster GPU implementations of the radix sort algorithm, which

is highly parallelizable [19, 20, 29, 38]. Sorted arrays can be used as alternatives

to hash tables that use minimal space and can be constructed at extremely fast

rates. Retrieval timings are highly varied, however, as a binary search is required.

If the queries are sorted, the branching patterns and memory reads will tend to

be coalesced into fewer memory transactions, reducing the cost of parallel queries

significantly. Randomly accessing the array incurs as many as O(lgN) probes in

the worst case, which requires many more probes than the hash tables we explore.
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2.2.2 Hash tables

Although much work has been done on hash tables in sequential computing, the

bulk of parallel hashing work has been done for theoretical PRAM models; rela-

tively little work has been done for practical parallel implementations.

Open addressing hash tables are among the most basic hashing schemes, where

N input items are distributed between ST > N slots [31,35]. Each of these slots is

capable of holding one key-value pair. Collisions are handled by probing the slots

until an empty slot is found; the simplest method is linear probing, which scans

every slot in a sequential manner until an empty slot is found. Other methods gen-

erate different probe sequences: quadratic probing generates a probe sequence that

makes increasingly larger jumps using a quadratic function, while double hashing

uses a secondary hash function to tailor the sequences for each key. While they

can be very fast for both construction and retrieval on the GPU, requiring very

few probes to answer a query when the table contains few items, problems arise

when trying to make a compact table: in the worst case, the whole table will have

to be traversed to terminate a query.

Previous work on parallel open addressing hash tables [16, 36] has no clear

adaptation for a highly parallel GPU environment, but we do present a parallel

implementation of the common probing schemes in Chapter 3.

Chaining handles collisions by appending all items hashing into the same slot

into a linked list associated with the slot. You can expect a fair distribution of

the items with a good hash function, resulting in lists with an expected average

length of O(N/ST ). As with open addressing, however, the number of probes

increases greatly as the number of slots shrinks. More importantly, linked lists

are horribly inefficient for the GPU: space is wasted storing pointer information

for each node, and following the pointers is extremely inefficient if the nodes are

scattered throughout memory. This makes parallel chaining methods that use

linked lists, like the work by Shalev and Shavit [39], impractical for the GPU.

This is underscored by the poor performance of the implementation by Sanders



12

and Kandrot [37]; they found that their version was just as slow as their serial

implementation and concluded that hash tables were a poor fit for the GPU.

Replacing the linked lists with contiguous arrays results in much better memory

access patterns [4,5]. We present a parallel chaining implementation that is based

on a radix sort in Chapter 4.

Collision-free hashing addresses the issue of repeated probing by guaranteeing

that every item can be located in exactly one location in the table, allowing all

queries to be answered with a single probe. One of the earliest examples is the work

of Fredman et al. [14]. They proved that if the size of the hash table is much larger

than the number of items (specifically Θ(N2)), then with some constant probability

a randomly chosen hash function will cause no collisions, giving constant lookup

time. While the space requirements would be impractical for even small data

sets, they reduce the space required to O(N) by first partitioning the input into

tiny buckets. A collision-free hash table is then built and stored for each smaller

bucket (Figure 2.1). With enough buckets, the number of items expected to fall

within each is O(1) and the expected size of the hash table drops to O(N) while

retaining O(1) retrieval efficiency. This method has a straightforward parallel

implementation, theoretically requiring O(lgN) time on a CRCW-PRAM [26].

However, the main drawback is the amount of space required by the table: the

basic version of their hash table requires 6N space, but it can be reduced to

N + o(N) with extra bookkeeping.

Much research followed along the same vein, mostly in the early nineties [7,17,

18, 26, 27]. While these approaches achieve impressive results (guaranteeing O(1)

lookup time, O(lg lgN) parallel table construction time, and O(N) size), the im-

plicit constant factors, especially on space, are unreasonable, and the constructions

use features of the theoretical PRAM model not available on actual GPUs.

Work was also done toward constructing minimal perfect hash tables, which

store N items in exactly N locations. Minimal, or even near-minimal, perfect

hash tables reduce the space overhead at the cost of increased construction time.
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Figure 2.1. Dynamic perfect
hashing uses a two-tiered hash
table. The first tier breaks
the input into smaller bins,
while the second level consists of
collision-free hash tables of each
bucket.

The spatial hash table construction used by Lefebvre and Hoppe [23] was based

on one of these approaches [13]. Problematically, such constructions are not only

expensive but also seem to be inherently sequential: the hash functions are built

in a way that the location of an item depends on the locations already taken by

earlier items.

Multiple-choice hashing alleviates some of the balancing issues that could occur

with chaining, where one bucket may have a large number of items but another may

be empty. Azar et al. [6] considered the usual chaining construction and showed

that using H > 2 hash functions and storing an item into the bucket containing

the smallest number of items reduces the expected size of the longest list from

O( logN
log logN

) to O( log logN
logH

). Vöcking [41] extended this work, using a hash table split

into H equally-sized subtables, each consisting of multiple buckets and associated

with its own hash function. Items may hash into one bucket in each subtable and

are inserted into the least loaded of the buckets available to them, breaking ties

to the left. This combination is shown to be effective at balancing out the bucket

loads, reducing the expected size of the longest list to O( log logN
H

).

One problem with this method is that all H lists have to be traversed to find

an item, which exacerbates the problem of trying to find keys that are not stored

in the table. Another problem is that it is not clear how to parallelize the choice

of bucket. By the time that a thread determines which of the H buckets is least

full, another thread may have inserted into the bucket and skewed the distribution.
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Adler et al. [1] describe a method where threads managing items communicate in

parallel with threads managing the hash table slots, but this type of coordination

would require inefficient repeated global synchronization between kernel launches.

Cuckoo hashing is a variation of open addressing that limits the number of slots

an item can fall into, preventing situations where the majority of a tightly packed

hash table must be probed in order to answer a query. It uses multiple hash

functions to assign each item a small, random set of slot choices for insertion [9,

34]. To handle collisions, items are moved around after their initial placement to

accommodate new items. The number of hash functions is a small, fixed number

(typically set to three or four), guaranteeing that any query can be answered after

checking a constant number of slots (see Figure 2.2). The cost of this guarantee

and higher table occupancy is a slower and more difficult construction algorithm.

From a GPU perspective, this guarantee is excellent because it restricts the

number of uncoalesced memory accesses required to answer any query, regardless

of how packed the table is. However, there are two main problems with perform-

ing cuckoo hashing. First, items are moved throughout the table, meaning that

each iteration incurs many uncoalesced global memory accesses. Secondly, cuckoo

hashing can fail during construction and require rebuilding the entire table from

scratch with new hash functions.

We examine two methods for parallelizing this method, which attack these

problems in different ways. Chapter 5 first examines a two-level approach that uses

multiple smaller cuckoo hash tables, while Chapter 6 looks at ways to reduce the

chances of failure for a straightforward parallel cuckoo hashing implementation.
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2.3 Experimental setup

2.3.1 Performance metrics

Given the wide variety of hashing algorithms available, we examine how they

perform based on three criteria:

• Construction time measures how long it takes to insert all of the input

items in parallel. For tables that are meant to be built, queried, and im-

mediately discarded, a fast construction speed would be ideal. Tables that

are meant to be built once and queried repeatedly might instead spend extra

time in the construction phase to speed up queries.

• Retrieval efficiency determines how quickly a query can be answered. We

are interested both in the average number of probes required to find an item

and the cost of handling harder to answer queries because these numbers can

be drastically different. As memory accesses can be costly, the number of

probes required to find an item should be kept to a minimum.

• Memory usage is a measure of how much memory is occupied by the hash

table. Applications using multiple data structures might emphasize more

compact hash tables because GPU memory is relatively limited. On the

other hand, using larger hash tables might be acceptable because they usually

provide a speed boost for both construction and retrieval. We focus on the

memory usage rather than the traditional load factor as this value is a more

useful metric for determining how much memory is required for a parallel

application.

Hash table designs that emphasize one metric will often require a trade-off for

one of the others. We will discuss when using one hash table over another makes

more sense for different situations.

Note that in sequential computing, one big advantage of the hash table over

other structures is that it is an inherently dynamic data structure; deletions and
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insertions have O(1) expected time. However, it is more complicated on the GPU

because thousands of threads could be modifying the structure simultaneously. If

any one of these modifications fails, e.g. an attempt to insert into a full table, the

execution pipeline would likely have to be interrupted and the hash table rebuilt.

We focus on handling these cases with fast constructions, which implicitly handles

modifications. This is a heavyweight approach, but one congruent with a parallel

processor with massive, structured compute capability.

2.3.2 Testing procedure

To analyze the performance of the hash tables, we measure the time taken to build

and query it under different settings. We present our results as rates to show trends

in performance; they can be easily converted back to actual times. Higher rates

indicate better efficiency because the data structure can process the input more

quickly. Reported rates are averaged over multiple runs to reduce the noise arising

from the randomness of kernel execution and some of the algorithms, themselves.

Before each run, we shuffled all of the input and query keys to simulate random

access. When possible, we do not include the time taken to allocate the memory,

as we consider it a pre-processing step.

2.3.3 System configuration

We test all results using CUDA 3.2 with an NVIDIA GTX 280 and an NVIDIA

GTX 470; the exact hardware specs are listed in Table 2.1. We used driver version

260.24 under 64-bit Ubuntu Linux. Aside from the general performance improve-

ments inherent in newer cards, these two GPUs are separated by a significant leap

in hardware architecture, with some of the most important changes including a

cached memory hierarchy and significantly faster atomic instructions. This causes

some hash tables that perform poorly on older cards to drastically improve on later

generations of cards.
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GTX 280 GTX 470

Manufacturer EVGA EVGA

Model SSC SuperClocked

Cores 240 448

Core clock speed 648 MHz 625 MHz

Shader clock speed 1404 MHz 1250 MHz

Memory clock speed 2322 MHz (effective) 3402 MHz (effective)

Memory interface 512-bit 320-bit

Memory bandwidth 148.6 GB/sec 136 GB/sec

Device memory cache No Yes

Compute capability 1.3 2.0

Table 2.1. Technical specs for our GPUs pulled from the manufacturer’s website.
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Chapter 3

Open addressing

In this chapter, we explore a parallelized implementation of open addressing hash

tables. These hash tables consist of ST ≥ N slots, where each slot of the table can

store one of the N items from the input. In order to insert an item with key k, a

series of probes is performed to find an empty slot, beginning with the slot h(k);

the item is immediately inserted into the earliest possible empty slot in the series

(Figure 3.1).

These hash tables are commonly used in sequential computing, but they face

some issues in highly parallel GPU environments. Serial implementations, for ex-

ample, have no chance of losing any items during insertion: nothing can be inserted

into the slot between checking the slot and actually writing the item in. However,

race conditions like this exist in parallel implementations because multiple threads

may be attempting to insert items into the same locations simultaneously.

V
h(V)

D R EN V

V
h(V)

D R EN V

Figure 3.1. Examples of linear probing (left) and quadratic probing (right).
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We give an overview of a parallel construction in Section 3.1, then describe the

implementation in Section 3.2. We then present and analyze results in Section 3.3

and discuss limitations in Section 3.4.

3.1 Overview

Our parallel construction method assigns each input item to a different thread,

then has each thread simultaneously probe the hash table for empty slots. Threads

are prevented from overwriting other keys being inserted by forcing serialization

of accesses to the table. We do so using atomic check-and-set operations, which

check if any given slot is empty and immediately inserts the item if it is.

Parallel retrievals don’t encounter the same issues since no changes are made

to the structure. To perform a query, a thread simply marches along the table

using the query key’s probe sequence and stops when either the key is found or an

empty slot is discovered; the latter case indicates that the query key would have

been inserted in that location had the key existed in the input.

3.1.1 Parameters

There are three main parameters that can be used to adjust the implementation’s

performance: the number of slots in the table, the probe sequence, and the maxi-

mum allowed number of probes in a sequence.

The number of slots in the hash table, denoted ST , must be greater than or

equal to the number of items in the input. This parameter is the main factor in

determining the efficiency of both the construction and retrieval rates.

Allocating more slots makes it much easier to find an empty slot in the table,

which results in shorter probe sequences. As shorter probe sequences result in

fewer memory accesses, this greatly reduces the average number of uncoalesced

memory accesses that are performed. Using fewer slots instead allows the table

to fit in a much smaller amount of memory, which can be important for space-

constrained applications. In our experiments, we found that setting ST ≈ 1.25N

struck a good balance between the construction and retrieval time trade-offs.
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Probing scheme Hash function

Linear probing h(k) = g(k) + iteration

Quadratic probing h(k) = g(k) + c0 · iteration + c1 · iteration2

Double hashing h(k) = g(k) + jump(k) · iteration

Table 3.1. Open addressing hashing schemes

The probe sequence determines the order in which the slots are examined when

trying to either insert or find an item; the three common ones are shown in Ta-

ble 3.1.

• Linear probing advances along the slots one at a time. While linear probing

hash tables can take advantage of caches because neighboring slots are vis-

ited, the problem is that items that can cluster around a particular slot. This

can cause extremely long probe sequences until an empty slot is found, which

is exacerbated when the hash table becomes more and more full. However,

it is guaranteed to visit every slot in the table.

• Quadratic probing mitigates the clustering issue by using a sequence gener-

ated by a quadratic function, which takes longer and longer leaps after each

probe. Typically, c0 = 0 and c1 = 1 for the hash function. There is still an

issue when a large number of items hash into the same slot, however: since

all of these items use the exact same probe sequence, they will repeatedly

collide.

• Double hashing generates probe sequences that are tailored for each key.

To do this, it uses a second hash function to determine the jump taken on

collision, making it unlikely for items colliding to be taking the same sequence

of jumps.

Both quadratic probing and double hashing are able to find empty slots much

more easily than linear probing, as they can jump out of tight clusters in the
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hash table more effectively. While linear probing may be friendlier for a cache,

its benefit is generally outweighed by the longer probe sequences it must use to

find an empty slot. Quadratic probing is also able to make some use of the cache

because of its relatively small jump size, but the ability of double hashing to do so

is dependent on how the second hash function is set.

The maximum allowed length of a probe sequence is useful for estimating

when we have hit an endless cycle. Without tailoring the hash functions for every

given situation, it is possible to encounter a probe sequence that will either never

find an empty slot or take too long, triggering the kernel watchdog and stopping

the construction process prematurely. Detecting these situations correctly would

require that a thread keeps track of which slots it has accessed, but that would be

very expensive. Instead, we limit the number of probes that a thread may use in

order to find an empty slot, then declare failure if the limit is hit and restart the

construction with a new hash function. We found that setting it to the smaller of

N or 10,000 iterations worked well.

3.1.2 Hash functions

In addition to the implementation’s parameters, the hash function is another big

factor in the hash table’s performance. Typical requirements for the hash func-

tion include distributing the items evenly through the table, lowering the average

number of probes required to find any given item, and being fast to compute.

The ideal hash function would assign each item to its own location in the table

with no collisions, meaning that queries could be answered after checking a single

entry. However, these perfect hash functions are usually difficult or impractical to

construct. The work done by Fredman et al [14] shows that using N2 slots for N

items makes it highly probable that any hash function chosen results in a collision-

free function, but the space requirements are unmanageable for even small input

sizes. Lefebvre and Hoppe [23] showed that it’s possible to generate collision-free

hash functions using nearly N space by combining two imperfect hash functions,

but the amount of work required to produce these hash functions is a serial process
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that has no obvious method of parallelization. In general, however, the benefits of

a perfect hash function are minimal because hash tables can be constructed in a

way that effectively limits the number of probes required to find an item to just

one or two.

Complex hash functions like MurmurHash [3] are quite effective at creating

fair distributions of keys, ensuring that changing even one bit of the key causes an

avalanche of changes to the bits in the hash function’s value. However, this wasn’t

necessary for many of the datasets we tried. We instead rely on the observation of

Mitzenmacher and Vadhan [30] that simple randomized hash functions work well

in practice. This stems from the fact that there is an inherent randomness in the

data that balances out the weakness of the hash function. For most of our datasets,

we achieved fast construction and retrieval times using randomly generated hash

functions of the form:

g(k) = (f(a, k) + b) mod p mod ST

Here, a and b are randomly generated constants, p is a prime number, and ST is

the number of slots available in the hash table. Note that it is possible to generate

new hash functions by simply changing the constants a and b: this is important

since it is possible for the hash table construction to fail, especially for extremely

packed tables.

When f(a, k) = a · k, we have a basic linear polynomial hash function. Under

certain circumstances this forms a 2-universal family of hash functions, which has

the mathematical property that the probability of any two items colliding is 6 1
ST

.

We can set p = 4, 294, 967, 291 (the largest unsigned 32-bit prime number) and

randomly generate1 constants a ∈ [1, p− 1] and b ∈ [0, p− 1], but to be an actual

2-universal family, every key k in the input would need to satisfy k < p. Care must

be taken to ensure that 64-bit intermediate values are calculated: we found that

1It is highly important to use a good random number generator to produce good hash func-
tions. We used the Mersenne Twister created by Matsumoto and Nishimura [28], available at
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html.

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
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the hash function could behave poorly otherwise. In practice, hash functions from

this family worked well and were able to limit the number of slots under heavy

contention in most cases.

For some of our datasets, we found that setting f(a, k) = a XOR k gave a fair

distribution even when using only 32-bit intermediate values. This saves some time

for hash table constructions that need to repeatedly recalculate the hash function’s

value, and highlights the fact that some time should be taken to tailor the function

family specifically for patterns in the input data. For example, hash tables storing

spatial data could benefit from a hash function that maps spatially-local input

items to nearby slots.

3.2 Implementation

Parallel insertion is performed using Algorithm 3.1. We begin by allocating an

array, table[ ], of size ST to store the hash table. Every slot stores a 64-bit integer,

which holds a 32-bit key and its value in the same entry. This allows both the

key and value to be inserted or pulled simultaneously, using fewer 64-bit memory

accesses instead of more 32-bit memory accesses. The alternative is to use two

separate 32-bit arrays, but the performance is highly dependent on the GPU.

We repeatedly loop until the structure is built, but in practice only one attempt

was required. At the beginning of every attempt, the table is filled with ∅, a special

value that indicates that the slot is empty; we specifically set ∅ to be the key-value

pair (0xffffffff, 0). We follow by generating a randomized linear polynomial

hash function using the method described in Section 3.1.2. We then build the

table by inserting all items into it simultaneously, with a different thread assigned

to each item.

Code for the insertion is shown in Listing 3.1; actual implementations should

remove code irrelevant to the chosen open addressing method. This requires 64-bit

global memory atomic operations that are available only on GPUs with a compute

capability of at least 1.2; the algorithm can be easily adjusted to work with 32-bit
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Algorithm 3.1 Process for creating an open addressing hash table.

1: allocate enough memory for table[ ], which will contain ST 64-bit slots

2: repeat

3: fill each slot with ∅

4: generate a new hash function for the current attempt

5: for all key-value pairs (k, v) in the input do

6: repeat

7: atomically check-and-set table[location]

8: advance location to next location in probe sequence

9: until ∅ is found or max probes hit

10: end for

11: until hash table is built

atomic operations instead, with extra steps for moving the values into the right

location after their corresponding keys have been inserted.

Threads complete their work when they successfully place their item, but a

thread block will not complete until all of its threads are done. Thus we choose

a relatively small thread block size – 64 threads – that minimizes the number of

threads within a block kept alive by a single thread’s long probe sequence.

Double hashing requires computing a second hash function, jump(k), whose

value is stored to prevent having to recompute it after each collision. Care must

be taken so that the jump distance is greater than 0 to prevent an item from

repeatedly failing to insert itself into the same occupied slot. We use the simple

jump(k) = 1 + (k mod jump prime), where jump prime = 41. Lowering this

prime forces the double hashing scheme to take smaller jumps, which speeds up

retrievals since all locations are more likely to be cached, while using larger primes

decreases the construction time instead, since the scheme can jump out of crowded

areas more quickly. The function worked well for larger hash tables, but it did

fail many times for hash tables containing less than 5K elements, which requires

smaller jumps.
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Listing 3.1. Parallel insertion of items into an open addressing table.

1 d e v i c e bool i n s e r t e n t r y ( const unsigned key ,

2 const unsigned value ,

3 const unsigned t a b l e s i z e ,

4 Entry ∗ t a b l e ) {

5 // Manage the key and i t s va lue as a s i n g l e 64− b i t en try .

6 Entry entry = ( ( Entry ) key << 32) + value ;

7

8 // Figure out where the item needs to be hashed in to .

9 unsigned index = hash func t i on ( key ) ;

10 unsigned double hash jump = jump funct ion ( key ) + 1 ;

11

12 // Keep t r y i n g to i n s e r t the entry in t o the hash t a b l e

13 // u n t i l an empty s l o t i s found .

14 Entry o l d e n t r y ;

15 for (unsigned attempt = 1 ; attempt <= kMaxProbes ; ++attempt ) {

16 // Move the index so t ha t i t po in t s somewhere w i th in the t a b l e .

17 index %= t a b l e s i z e ;

18

19 // Atomica l ly check the s l o t and i n s e r t the key i f empty .

20 o l d e n t r y = atomicCAS ( t a b l e + index , SLOT EMPTY, entry ) ;

21

22 // I f the s l o t was empty , the item was i n s e r t e d s a f e l y .

23 i f ( o l d e n t r y == SLOT EMPTY) return t rue ;

24

25 // Move the i n s e r t i o n index .

26 i f ( method == LINEAR) index += 1 ;

27 else i f ( method == QUADRATIC) index += attempt ∗ attempt ;

28 else index += attempt ∗ double hash jump ;

29 }

30

31 return f a l s e ;

32 }
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The thread begins by concatenating the key and its value together, then deter-

mining where in the hash table the item should be inserted. A for loop is used to

probe the table up to kMaxProbes times for an empty slot for insertion. On each

attempt, an atomic check-and-set (atomicCAS()) inserts the entry into the table,

but only if the slot contains ∅. Because the operation is atomic, other threads

attempting to insert into the same slot will fail and continue probing.

Inserting into the table after the table’s initial construction is possible by fol-

lowing the same procedure. However, the cost of packing more items into the table

increases dramatically once the table has reached a certain load factor. Moreover,

a failed insertion would require rebuilding the whole table from scratch.

Parallel retrieval essentially follows the same search process as the construction.

Query keys are distributed among the threads performing the retrieval, using the

exact same sequence of probes that would have been taken if the query key were

being inserted. The probes stop immediately after finding the query key in the

table, which returns its value, or either finding an empty slot in the table or hitting

the maximum probe sequence length, both of which indicate that the probe would

have been found by that point.

3.3 Performance analysis

We present results using the setup described in Section 2.3.2.

3.3.1 Comparisons between probing methods

Figure 3.2 shows the effect of the input size on both the insertion and retrieval

rates for each of the different probing methods. We assume a fixed table size of

1.25N , producing hash tables with a load of 80%. Our data consisted of randomly

generated 32-bit keys paired with 32-bit values, where all of the input keys were

unique. We also tested the performance on increasingly finer voxelizations of the

Lucy dataset, but the results were similar to the random data case and are omitted.

Construction rates were computed using the time taken to insert all of the input

items into the table in parallel. After an initial ramping up period, the construction
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Figure 3.2. Effect of input size on construction retrieval rates for tables con-
taining 1.25N slots on both the GTX 280 (top) and 470 (bottom).

rates using all three probing methods becomes more or less flat, meaning that

the time required to construct the table increases linearly with the input size.

Performance for all three methods on the GTX 470 is roughly double that of the

GTX 280; one likely cause is the speed boost atomic operations received on Fermi

cards. Linear probing does consistently worse than both quadratic probing and

double hashing, reflecting the problems linear probing encounters when trying to

escape crowded areas of the table. Double hashing has a slight edge over quadratic

probing because it can jump away more readily.

Retrieval rates measure how quickly the hash table can be queried for all of

the input items in parallel, with each query assigned to a different thread. We

see similar trends here, which is expected because retrievals mimic the insertion

process without any slow atomic operations. All three methods get a performance

boost, with quadratic probing and double hashing getting a more than 2x boost

on the GTX 470. Although linear probing still lags behind the other methods,
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Figure 3.3. Effect of the table size on construction and retrieval rates for tables
containing 10 million items.

it gets an even bigger 4x performance boost. The sharp decline in retrieval rates

for the GTX 280 for larger input sizes does not appear when using two separate

32-bit arrays to store the keys and values, but storing the data this way only hurt

performance on the GTX 470.

Quadratic probing has an obvious advantage over double hashing on the GTX

470, which is a direct result of the jump function chosen for double hashing. As

mentioned earlier, allowing larger jumps decreases construction times because the

average number of probes required to insert an item decreases. Conversely, decreas-

ing the jump size allows taking advantage of the cache, speeding up the retrievals.

Our GTX 280 results corroborate this: double hashing consistently performed

slightly better than quadratic probing even for larger jumps, suggesting that the

cache is able to reduce the memory traffic slightly.

Figure 3.3 shows the effect of modifying the table size while keeping the input

size fixed at 10 million items, effectively changing the load of the hash table and
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Figure 3.4. Effect of querying hash tables containing 10M items with keys that
were not part of the original input items. Each table was queried for 10M unique
keys with different mixtures of keys that were and were not part of the original
input: having 0% “failed queries” indicates that the original input items were
queried from the table, while 100% “failed queries” indicates that none of the
input items were queried.

the number of empty slots available. All rates begin to degrade significantly below

ST = 2N , drastically dropping as the table size approaches ST = N . The effect is

most significant for linear probing, which is burdened by the sheer number of slots

it checks. When ST > 2N , the construction rates for all three methods are similar,

reflecting the ease of finding empty slots. On the GTX 280, retrievals for all three

methods seem capped at 250M pairs per second for the largest table sizes, with

linear probing constantly lagging behind. For these cases, the table is very sparse

and can answer queries after just one or two probes. Surprisingly, linear probing

outperforms the other two methods on the GTX 470. Because the cache pulls in

a line of entries, it is highly likely that all of the locations that a thread needs get

cached and can be checked quickly.
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Figure 3.4 shows the result of failing to successfully find a query key for hash

tables of size ST = 1.05N, 1.25N , and 2N . We fixed both the input size and query

size at N = 10, 000, 000, but replaced random keys in the query set with keys that

were not part of the original input; we call any query that fails a “bad” query. The

percentage of replaced query keys varied per trial.

In general, threads handling bad queries have fewer chances to exit out com-

pared to threads capable of finding their keys: to terminate, they must either find

an empty slot or hit the maximum probe sequence length. This is represented by

the downward slope in the rates as larger percentages of the queries fail, though

the effect is less pronounced when using larger table sizes because more empty

slots exist.

On the GTX 280, it is always advisable to use double hashing because its

larger jumps result in faster query termination, regardless of the number of bad

queries. Linear probing consistently lags behind: when ST = 1.05N , bad queries

hardly have an effect because a good portion of the table is already being probed

to answer regular queries.

On the GTX 470, the cache gives quadratic probing an edge over double hash-

ing; even linear probing does better than double hashing when ST = 2.0N . Another

difference is that bad queries have a stronger effect, causing a significant drop in

performance even when only 10% of the queries fail. This is because threads in the

same block still have to wait for the slowest among them to finish, even though

the majority of queries finish quickly.

3.3.2 Comparisons with radix sort and binary search

We also compared quadratic probing hash tables against using a sorted array of

the input items, which requires using a binary search to perform a query. Sorted

arrays can be constructed extremely quickly using GPU implementations of the

radix sorting algorithm; we used Duane Merrill’s radix sort [29], the fastest GPU

implementation available at the time of writing. Figure 3.5 shows how quickly it

performs relative to quadratic probing: although quadratic probing has an edge



31

250

300

350

400

450

500

M
il

li
o

n
s

Quadratic probing (3N)

0

50

100

150

512 4096 32768 262144 2097152 16777216

Input size (log scale)

Quadratic probing (2N)

Quadratic probing (1.25N)

Quadratic probing (1.05N)

250

300

350

400

450

500

M
ill

io
n

s

Quadratic probing (3N)

0

50

100

150

512 4096 32768 262144 2097152 16777216

Input size (log scale)

Quadratic probing (2N)

Quadratic probing (1.25N)

Quadratic probing (1.05N)

Figure 3.5. Effect of input size on the construction of a radix-sorted array and
quadratic probing hash tables with differing numbers of slots.

for smaller datasets, radix sort is a great fit for the GPU and achieves rates that

hashing cannot.

Figure 3.6 shows the accompanying query rate graphs, which compare binary

searches to retrievals from the hash tables. Binary searches require O(lgN) mem-

ory accesses to find an item, but the time taken is highly dependent on how well

ordered the queries are. For example, for a sorted array containing 10 million

items, querying it with the sorted input items takes about 17 milliseconds on the

GTX 470. However, shuffling the queries completely before performing them, rep-

resenting random access, takes about 140 milliseconds. We provide rates for both

of these cases as guidelines for comparison, thought they do not represent the

absolute performance extremes2.

2Unless explicitly stated, whenever we talk about a “binary search” without any information
about the query order, we are referring to the binary search with shuffled queries; it provides a
more accurate comparison for random-access performance.
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Figure 3.6. Effect of input size on retrieval rates from a sorted array and
quadratic probing hash tables with differing numbers of slots. Two rates are
included for the binary search, which test retrieval rates when the queries are
completely shuffled and completely sorted; the former case represents the ran-
dom access case that we are interested in, though the latter provides some
interesting context.

In the ordered query case, binary search generally outperforms hashing because

the binary search’s memory accesses repeatedly coalesce: any divergence in mem-

ory accesses will be near the end of the query, but even in this case warps will

be likely to read from the same segment of memory. Interestingly, the GTX 470

performs worse than the GTX 280 in this case. We believe this is related to the

slightly better hardware specs of our specific GTX 280; the binary search derives

little benefit from the cache available on the 470 because it repeatedly makes large

hops through memory – the cache could even hurt performance because memory

transactions are enlarged to fill the cache lines3. When the queries are shuffled, the

results are much worse because warps must find items located in distant parts of

3The cache can be partially disabled, but it would likely degrade performance for the rest of
the application.
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Figure 3.7. Effect of failed queries on the query rates of binary search and three
quadratic probing hash tables with differing numbers of slots. The structures all
contained 10M items. Two rates are included for the binary search, which test
retrieval rates when the queries are completely shuffled and completely sorted.

the array. This results in a high number of uncoalesced memory accesses without

spatial locality.

On the GTX 280, quadratic probing can perform better than the binary search

with shuffled queries because the number of probes required to find items is smaller

than the O(lgN) probes needed by the binary search. However, all of the quadratic

probing hash tables perform drastically worse than the binary search with sorted

queries, even when the average number of probes required to find an item is low.

In contrast, the performance of the hash tables is dramatically improved for the

GTX 470 – the quadratic probing hash tables with ST > 2.0N have higher retrieval

rates than even the binary search with sorted queries.

We also tested how failed queries affect retrieval rates, shown in Figure 3.7; the

queries were constructed in the same way they were constructed for Figure 3.4. The
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binary search we used does not provide an early-out for queries that are smaller

than the first array element or bigger than the final array element; the early-

out degrades performance when all queries can be answered, but only provides a

marginal benefit when the queries cannot. Nonetheless, binary search performance

actually increases with higher percentages of failed queries.

All of the hash tables perform worse as the number of bad queries increases,

showing the difficulty in terminating these queries – the query rates when ST =

1.05N even dip below the shuffled binary searches because so much of the hash

table has to be probed before termination.

3.3.3 Probe sequence lengths

The retrieval rates we have presented in this section have all been for retrieving N

from a hash table containing N items, effectively averaging the cost of answering all

of the queries. The problem is that some queries are much, much more expensive

to answer than other queries; query inputs consisting mainly of these harder to

find keys will have very poor performance. Because threads in the same block have

to wait for the longest query among them, driving down the number of probes is

key to achieving better performance in both construction and retrieval.

To analyze how skewed the distributions are, we took statistics on how many

probes were required by each thread to find their query in the table, assuming that

either all or none of the queries could be found. Table 3.2 shows statistics taken

for hash tables containing 10 million items with different table sizes and different

probing schemes. It gives the average number of probes required to find an item,

as well as the number of probes required to find 80%, 90%, 99%, and 100% of the

items in the table; these milestones show how quickly the distribution tapers off.

A single, representative trial is used for each configuration.

When all of the queries could be found, the median number of probes required

to find an item was just one, reflecting the ease with which many of the threads

could find an empty slot during construction. The average number of probes grew

significantly higher as the table became more compact and the table had higher
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Queries Probing Slots AVG 50% 80% 90% 99% 100%

failed scheme

None Linear 1.05N 11.06 1 6 16 195 5144

1.25N 2.99 1 3 6 29 301

2.00N 1.50 1 2 3 7 43

Quadratic 1.05N 3.39 1 4 8 29 264

1.25N 2.13 1 3 4 12 80

2.00N 1.43 1 2 2 5 22

Dbl. hashing 1.05N 3.23 1 4 7 28 237

1.25N 2.02 1 3 4 11 54

2.00N 1.39 1 2 2 5 20

All Linear 1.05N 223.40 77 340 622 1820 5650

1.25N 12.97 6 19 34 95 354

2.00N 2.49 1 3 5 13 58

Quadratic 1.05N 21.85 15 35 50 98 318

1.25N 5.43 4 9 12 23 78

2.00N 2.13 1 3 4 8 26

Dbl. hashing 1.05N 21.42 15 34 49 97 359

1.25N 5.06 4 8 11 22 81

2.00N 2.01 1 3 4 7 27

Table 3.2. Statistics for a single run of querying the hash table with different
space constraints and probing methods. The two extremes are shown, where
either none of the queries fail (top) or all of them fail (bottom). Numbers
represent the average number of probes required to find an item (AVG), and
the number of probes required to find 50%, 80%, 90%, 99%, and 100% of the
items the table.
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loads. Unsurprisingly, linear probing had the hardest time, regardless of the table

size. For the cases where ST < 2N , linear probing correspondingly has the worst

retrieval performance in Figure 3.3. We can see why by looking at the probe

distribution: it has a much heavier and larger tail than the other two schemes,

requiring many more probes.

Double hashing has a consistently lower average and better distribution than

the other cases, but it actually had worse retrievals than the other two methods

on the GTX 470 for the largest table size we tested. Since the number of probes

required to insert a key for the other two methods is small, it is highly likely that

all of the necessary probes were pulled into the cache.

When no query keys are found in the table, threads have to iterate until they

find an empty slot in the table. Similar trends are seen between the three prob-

ing schemes, but the average is considerably higher and the probe distribution is

skewed much more heavily toward requiring many more probes to terminate. This

results in the drastic performance drops in Figure 3.4.

3.4 Limitations

Under the right conditions, open addressing hash tables can be viable data struc-

tures for random access on the GPU. However, they suffer from many limitations.

Performance drops significantly for compact tables. Although these hash

tables perform well when enough empty slots are available, both the time taken

to build and query the table increase significantly once the table size shrinks past

1.5N , or 67% load. This can be problematic for applications that require a compact

hash table.

High variability in probe sequence lengths means that an open addressing

hash table can find most items with a small number of probes, while requiring a

significantly higher number of probes to find the other items. The number of these

items increases for more compact tables, which have higher loads. The problem

here is twofold. First, the effort required to query the items for these harder-to-find
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items can be higher than simply doing a binary search through a sorted array, which

is guaranteed to terminate after O(lgN) steps. Second, parallel queries consisting

mainly of these items will suffer from a performance penalty since threads have to

wait for the slowest thread in their block.

Removing items from the table is not straightforward. It is not sufficient to

simply fill the removed item’s slot with ∅ because it would break queries for any

items that would fall into that slot in the table. One option would be to fill in

the slots of deleted entries with “tombstone” markers, indicating that an item was

deleted and that queries should continue past them. However, removal times would

be unaffected since the slots are still visited.

3.5 Summary

When in need of a data structure that provides random access to its contents,

quadratic probing and double hashing hash tables generally perform well when

the size of the table is much larger than the number of input items (at least

twice as large). For these cases, the number of probes required to find an item

is low since the table occupancy is low. However, performance of the hash tables

decreases significantly for smaller hash tables as the probe sequence lengths become

arbitrarily long.

Linear probing is a wildcard whose performance depends entirely on the table

size and the GPU architecture. When a cache is available, it makes a lot of sense

to use it because it is more efficient than the other two methods. Otherwise, using

it is just not practical.

In Chapters 5 and 6, we discuss a different open addressing method called

cuckoo hashing. It ensures that queries can be answered in a small, constant

number of probes, regardless of the table’s size. This results in fast retrievals for

very tightly packed tables, as well as limiting the effect of failed queries. The

trade-off, however, is a longer and more complicated construction process.
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Chapter 4

Chaining

Chaining, unlike open addressing, treats each slot of the hash table as a bucket

that can store multiple items. Any items falling within the bucket are inserted into

a linked list associated with that specific bucket (Figure 4.1). To retrieve an item

from the table, the bucket potentially containing the query key is computed and

its list traversed. Using good hash functions is important because retrievals are

O(N) in the worst case, when all items hash into the same bucket. This problem

is mitigated by using more buckets for the structure, reducing the average amount

of items per bucket.

Problematically, chaining hash tables using linked lists are terribly inefficient

on the GPU. There are several reasons why:

V
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E

V
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K

h(V)

Figure 4.1. Chaining attaches a list to each hash
table slot. All items hashing into the same slot are
inserted into its list.
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• Linked lists store two things with every node: the item itself, and a pointer

to the next node in the list. The memory available on a GPU is relatively

limited, so having to store a pointer within every node of the list is expensive.

• To find an item, the list must be traversed from the beginning, following

pointers until either the item or the end of the list is reached. This en-

tails hopping around memory, giving caching hierarchies little opportunity

to improve performance.

• Threads simultaneously inserting into the same linked list have to serialize

their actions to prevent clobbering each other’s writes.

By sacrificing the ability to modify the structure after the initial construction of

the hash table, we can avoid both the storage and performance overhead of pointer

traversal associated with linked lists. In this chapter, we present an algorithm

based on a radix sort, which can be performed very quickly. Our algorithm is

described in Section 4.1, while the implementation is presented in Section 4.2.

Results are presented in Section 4.3, while limitations are presented in Section 4.4.

4.1 Overview

Our chaining implementation avoids linked lists by storing all the items falling

within a bucket into contiguous locations of an array. The n items of each bucket

are stored such that its items start at index k and end at index k + n − 1. The

array is segmented to that each bucket’s items are sequentially stored end to end

(Figure 4.2). Storing the data in this manner means that we only need to record

the indices of each bucket’s first item in the array; the number of items within each

bucket can be computed by taking the difference between these indices. The goal of

our construction algorithm is to produce two arrays: bucket contents[ ], containing

all of the items rearranged into their buckets, and bucket starts[ ], which records

where each bucket begins in bucket contents[ ].

The performance of our data structure is mainly dependent on one parameter:

the number of buckets in the hash table, B. Increasing this number decreases the
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Figure 4.2. To avoid pointer traversal, the lists from Figure 4.1 can be stored
as a single array with each bucket’s items stored contiguously. The array index
to each bucket’s first item is recorded; bucket sizes can be computed by taking
the difference of these indices. Empty buckets (red) are given a length of zero
by pointing both of their boundaries to the same location.

average size of the buckets, reducing the average number of probes required to find

an item and speeding up retrievals. However, it increases the amount of space used

by the structure, since the starting locations of more buckets must be recorded.

It also increases the amount of time taken to build the table since the radix sort

must do more work (we discuss this in Section 4.3). Decreasing B, on the other

hand, places more items in each bucket, meaning that more items must be checked

for each query. The effect is exacerbated when queries cannot be answered, as

every item in the query key’s bucket must be examined before declaring failure.

We found the most balanced setting to be B ≈ 0.5N .

An example of our construction procedure is detailed in Figure 4.3. We begin

by identifying which bucket every input item falls into, then store these IDs in a

separate array. We then rearrange the input items into their respective buckets

by performing a key-value radix sort, with the “keys” represented by the bucket

IDs and the “values” being the input items. Because we are sorting based on

what bucket each item falls into, the contents are each bucket are placed contigu-

ously in memory, with the buckets ordered by their index. We store this array as

bucket contents[ ].
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Figure 4.3. By performing a radix sort on the bucket IDs computed for each
item, the input data is rearranged so that each bucket’s contents are contiguous
in memory (top half). Differences between neighboring entries of the sorted
bucket indices array then indicate the boundaries between the lists (bottom
half). The list for bucket 1 contains nothing, so its starting location is recorded
as being the same as the location for bucket 2 (dotted arrow), effectively giving
it a length of 0.

Finally, we identify boundaries between different buckets by examining neigh-

boring entries in the sorted bucket IDs array. Because the array has been sorted,

having two different buckets listed in consecutive entries shows the end of the for-

mer bucket and the start of the latter bucket; all of these boundaries are recorded

in bucket starts[ ].

Extra care must be taken for buckets that contain no items, which do not appear

in the sorted list. In the Figure, the boundaries between most of the buckets is

easily discovered, but no items hashed into bucket #1. These empty buckets can

be inferred when a boundary is found between two other buckets, as the difference

between the bucket IDs would be greater than one. In these situations, we record

the location of the bucket as being the same as the location of the next bucket,

effectively indicating that the bucket contains no items.

From this point, the data structure is ready for use. To perform a query, the

bucket b containing the query key is first computed. The difference between two
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consecutive entries in bucket starts[ ] indicates how large each bucket is: we pull

information about where the data for buckets b and b + 1 begin, allowing us to

identify where the bucket’s data begins and ends. Finally, the items are examined

until either the query key or the end of the bucket is found.

4.2 Implementation

Once the number of buckets has been decided, we generate a hash function using

the method described in Section 3.1.2 and allocate the memory for the arrays

needed by the hash table:

• bucket contents[ ], an array of N 64-bit entries that holds all of the items in

the table. Every bucket’s items are stored contiguously, with each bucket

stored in consecutive order.

• bucket starts[ ], an array of B 32-bit integers that holds the index of each

bucket’s first item, implicitly recording where each bucket ends. The index

of the first item for bucket b is recorded at bucket starts[b− 1]; the items of

bucket 0 implicitly start at bucket contents[0]. The final element stores the

number of items in the table to mark the end of the last bucket.

• which bucket[ ], a temporary array containing N 32-bit integers.

Our first kernel uses which bucket[ ] to record the index of the bucket each item

falls into. We use thread blocks containing 64 threads, with each thread assigned

to a different input item; the ith thread computes the bucket for the ith item using

the hash function, then stores the result in which bucket[i]. We then use Duane

Merrill’s radix sort [29] to rearrange the input data into their respective buckets,

producing bucket contents[ ] and the sorted which bucket[ ] array.

Another kernel produces bucket starts[ ] by examining neighboring entries of

the sorted which bucket[ ] array; the snippet we use is presented in Listing 4.1.

We use N threads, each checking for differences between consecutive entries of

which bucket[ ]. If they are different, then the thread has discovered the boundary
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Listing 4.1. Compacting down the information about each bucket

1 d e v i c e void f i nd bo un da r i e s ( const unsigned num keys ,

2 const unsigned num buckets ,

3 const unsigned ∗which bucket ,

4 unsigned ∗ b u c k e t s t a r t s ) {

5 // Each thread l oo k s at one entry in the so r t ed bucke t index l i s t .

6 unsigned index = threadIdx . x +

7 blockIdx . x ∗ blockDim . x +

8 blockIdx . y ∗ blockDim . x ∗ gridDim . x ;

9 i f ( index >= num keys )

10 return ;

11

12 unsigned prev ious bucke t = ( index > 0 ? which bucket [ index −1] : 0 ) ;

13 unsigned my bucket = which bucket [ index ] ;

14

15 // b u c k e t s t a r t s [ i ] s t o r e s the s t a r t i n g l o c a t i o n o f bucke t i +1.

16 // I f the prev ious entry l i s t s a d i f f e r e n t bucke t index , a boundary

17 // was found ; record the array index as the beg inn ing o f the

18 // a f f e c t e d bucke t s .

19 i f ( p rev ious bucke t != my bucket ) {

20 for (unsigned i = prev ious bucke t ; i < my bucket ; ++i ) {

21 b u c k e t s t a r t s [ i ] = index ;

22 }

23 }

24

25 // The l a s t thread c l o s e s o f f a l l bucke t s a t the ‘ end ’ , which

26 // in c l ud e s the f i n a l bucke t con ta in ing an item and a l l bucke t s

27 // a f t e r i t ( which are empty ) .

28 i f ( index == num keys − 1) {

29 for (unsigned i = my bucket ; i < num buckets ; ++i ) {

30 b u c k e t s t a r t s [ i ] = num keys ;

31 }

32 }

33 }
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Listing 4.2. Querying the hash table

1 d e v i c e unsigned que ry tab l e ( const unsigned num buckets ,

2 const Entry ∗ tab le ,

3 const unsigned ∗ bucke t s t a r t s ,

4 const unsigned key ) {

5 // Figure out what bucke t i t ’ s in .

6 const unsigned bucket id = hash func t i on ( num buckets , key ) ;

7 const unsigned l i s t s t a r t = ( bucket id > 0 ?

8 b u c k e t s t a r t s [ bucket id −1] : 0 ) ;

9 const unsigned n e x t l i s t s t a r t = b u c k e t s t a r t s [ bucket id ] ;

10

11 // Traverse the bucke t ’ s l i n k e d l i s t .

12 unsigned l o c a t i o n = b u c k e t d a t a s t a r t s a t ;

13 unsigned value = NOT FOUND;

14 while ( l o c a t i o n < n e x t l i s t s t a r t ) {

15 Entry c u r r e n t e n t r y = t a b l e [ l o c a t i o n ] ;

16 i f ( ge t key ( c u r r e n t e n t r y ) == key ) {

17 value = g e t v a l u e ( c u r r e n t e n t r y ) ;

18 break ;

19 }

20 l o c a t i o n ++;

21 }

22 return value ;

23 }

between the buckets named by which bucket[i− 1] and which bucket[i]. Because

buckets might be empty, i is recorded as the starting index for all buckets b with

index which bucket[i− 1] < b ≤ which bucket[i]. A special case occurs for the last

thread with index x, which must cap the final bucket(s). This set includes the last

non-empty bucket (named by which bucket[x]) and all of the empty buckets after

it. From here, which bucket[ ] is no longer needed.

Querying the table is done by the code in Listing 4.2. The thread performing

the query first computes the bucket its query falls into, then retrieves the starting
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Figure 4.4. Effect of the input size on construction rates for chaining hash tables
with varying numbers of buckets. The rate for a 32-bit key, 64-bit value radix
sort is shown for comparison on the GTX 280.

location of the bucket’s list. It also pulls the starting location of the next bucket

to find the length of the list. It then simply loops over each entry of the list

probing for the query. Note that a minimum of two memory accesses are required

to perform any query, since information about the lists must always be pulled.

4.3 Performance analysis

Again, we present results using the setup described in Section 2.3.2.

4.3.1 Effect of changing the number of buckets

Figure 4.4 shows how the input size affects the insertion rates for chaining hash

tables. Data consisted of increasingly large amounts of random 32-bit key-value

pairs, where all of the keys were unique. We plot the rates for 5 different settings

of the number of buckets, ranging from 0.1N 6 B 6 2N .
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The rate at which the table can be built tends to decrease as the number of

buckets is increased, with the hash table using B = 0.1N generally being built the

quickest. Both the GTX 280 and 470 show the same trends and the exact same odd

behavior: all five tables start out with similar rates then break away after specific

input sizes. This is directly attributable to the way the radix sort implementation

works: to sort 32-bit keys, it uses 8 passes and bins that are 4-bits wide. Our

buckets are consecutively numbered from 0 to B − 1, so the upper bits are always

going to be 0 and the later radix sort passes have nothing to do. The points in

the graph where the performance drops suddenly indicate where the bucket IDs

require more bits and trigger another pass.

To show this, we plotted the rate for performing a 32-bit key, 64-bit value radix

sort alongside the hash table rates for the GTX 280 in the Figure as a baseline.

All of the keys were unique and ranged from 0 to 4,294,967,295, representing the

worst case scenario where all 32 bits have to be examined. For the most part, the

hash tables have higher insertion rates than the radix sort, indicating that they

benefit from having fewer passes. They are, however, dragged down by the search

for the bucket boundaries.

Figure 4.5 plots the rate at which all of the input items are retrieved from

the hash tables. All queries are shuffled randomly prior to being performed to

represent random access. On the GTX 470, the retrieval rates for the hash tables

all follow a mostly linear trend, but have a slight downward decline as the input

size increases. Because each of the buckets are contiguously stored, the cache

can pull up the contents of the bucket and significantly reduce the number of

trips to the device memory. The graph for the GTX 280 is a bit odd: the peak

indicates that chaining works well for inputs containing 250K items or less, but

the rates drop sharply afterward and plateau like the GTX 470 rates1. We found

that the height of the plateau was related to how many probes were performed:

1 The drop in performance for larger datasets appears again for our other results, but we
don’t know what causes it. However, we have had similar issues in the past caused by faulty
graphics card drivers that were fixed in later updates.
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Figure 4.5. Effect of the input size on retrieval rates for chaining hash tables
with varying numbers of buckets.

prematurely stopping all queries after each probe shows that the plateau lowers

with longer probe sequences but eventually settles.

The trends show that going for a higher construction rate results in a slower

retrieval. Using more buckets decreases the average number of items in each bucket

and increases the retrieval rate, but with diminishing returns: if all of the query

keys exist in the table, there is little benefit to adding more buckets when the

average size of each bucket is one or less because the queries will always hit occupied

buckets.

However, the advantage is more pronounced when the queries have a chance

of failing (Figure 4.6). We built chaining hash tables with a varying number of

buckets on both GPUs but the trends were similar; we omit the GTX 280 graphs for

brevity. The cost of answering a bad query for hash tables with only B = 0.1N is

expensive, with the retrieval rate decreasing by over 40% when none of the queries

can be found. This is because the entire bucket’s contents must be searched in



48

Figure 4.6. Effect of querying the hash table with keys that cannot be found
in a hash table containing 10M items on the GTX 470. Each hash table was
queried 10M times with increasing percentages of these bad queries. Trends for
the GTX 280 were the same and are omitted.
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Figure 4.7. Effect of the number of buckets used by hash tables containing
10M items on construction and retrieval rates. Results are shown for the GTX
470, but trends for the 280 are similar. Rates for three different scenarios are
presented, which range from finding all to finding none of the query keys.

order to confirm that the query won’t be found: fewer buckets means the average

number of items in each bucket is relatively high. As expected, the cost of a failed

query decreases as the number of buckets increases. For the cases where a large

number of buckets are available, it is likely that the failed queries are hitting empty

buckets and providing faster retrievals. There is a tipping point near B = 0.5N

where failed queries actually become cheaper to answer than when all of the keys

are retrieved; this robustness can be useful for applications that depend on having

consistent performance.

We examined the behavior more closely in Figure 4.7. We again built hash

tables with 10M items and queried them with increasingly higher percentages of
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failed queries, but we focus on the effect of varying the number of buckets. The

construction rate again behaves as expected, decreasing as the number of buckets

increases. However, the cost of a fast construction and smaller memory usage is

the big drop in retrieval rates for B < 0.8N .

The retrieval rates show a balanced point at B = 0.5N . After this point it is

considerably cheaper to fail to answer a query than it is to succeed, since many of

the buckets hit by the queries could be empty. This advantage only grows as the

number of buckets increases, which increases the likelihood that some buckets are

empty. Before this point, though, it is slightly tilted in the other direction: the

larger buckets favor queries that can exit early by succeeding.

The most balanced trade-off between the construction and retrieval times oc-

curs around B = 0.5N since it results in a consistent retrieval rate. Significantly

higher query rates can be obtained at a marginal construction cost by moving to

B ≈ 0.84N : although it helps little for successful queries, failed queries gain a

significant speed boost.

4.3.2 Comparisons with other methods

As we did with our open addressing hash tables, we compared the performance of

our chaining hash tables against binary searching a radix-sorted array of the input

items2. We also compared against quadratic probing hash tables, which were the

most balanced of the three methods we presented in Chapter 3. To form a fair

comparison, we choose pairs of hash tables occupying the same amount of memory:

a quadratic probing hash table with N slots occupies as much space as a chaining

hash table containing 2B buckets. This is due to the fact that each hash table

slot requires 8 bytes to store a key and value, while a bucket only needs to store 4

bytes for where its data is located.

Figure 4.8 compares the construction rates of all of the methods, with three

different space configurations for both chaining and open addressing. Radix sort

2This is a 32-bit key, 32-bit value radix sort and different from the radix sort we showed in
Figure 4.4.
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hash table type was tested with three different space usages.

almost always performs better than chaining because of the extra work required to

find the boundaries between the buckets – even though chaining uses a radix sort

as part of its construction, it uses a more expensive 32-bit key, 64-bit value sort.

On the GTX 280, the chaining hash tables have build rates that are around

3x as fast as the equivalent quadratic probing construction. Chaining continues

to perform well on the GTX 470, but quadratic probing gets a significant boost

because of the faster atomics, and has its rates ramp up much more quickly than

the radix sort needed by our chaining algorithm. Moreover, the quadratic probing

construction continues to be faster than the chaining construction for the 2N case.

In this case, there is much less work to do because most threads will be able to

find empty slots quickly.

Figure 4.9 compares the corresponding retrieval rates. Like we did with the

comparison graphs in the previous chapter, we present binary searching rates for
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completely shuffled to represent random access, though we also show the rate for
a binary search when the queries are sorted to serve as a performance baseline.

when the queries are either shuffled (representing random-access) or completely

sorted; the latter is shown as a performance baseline. The Figure shows that

while radix sort has the fastest insertion rates, randomly accessing elements of the

sorted array using binary searches performs worse than all of the hash tables after

a certain input size; this point occurs earlier on the GTX 470.

Chaining has a major advantage over quadratic probing on the GTX 280 until

the hash table contains around 8 million items, when the rates meet. This is

interesting because chaining requires more probes, on average, to answer a query

and requires two extra memory accesses to pull information about the query key’s

bucket; we take statistics on this later in the section. The story is different on the

GTX 470, where all of the retrieval rates get a boost. Quadratic probing performs

especially well when using 2N space, reflecting the table’s sparsity. Even quadratic
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probing with 1.25N space has higher retrieval rates than all of the chaining tables

when N > 1, 000, 000.

When looking for query keys that are not in the table, you should almost

always use a chaining hash table on the GTX 280 since it will generally outper-

form the corresponding quadratic probing table using the same amount of memory

(Figure 4.10). On the GTX 470, quadratic probing has a significant performance

advantage over chaining for larger table sizes because of the speed boost the ar-

chitecture provides, giving it comparable insertion rates and significantly faster

retrieval rates. Chaining does, however, maintain the advantage for smaller table

sizes because it is much more robust. Moreover, it is consistently faster than the
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Queries Scheme Size AVG 50% 80% 90% 99% 100%

failed

None Chaining 1.05N 6.00 6 9 11 16 29

1.25N 2.00 2 3 4 6 12

2.00N 1.25 1 2 2 3 7

Quadratic probing 1.05N 3.39 1 4 8 29 264

1.25N 2.13 1 3 4 12 80

2.00N 1.43 1 2 2 5 22

All Chaining 1.05N 10.00 10 13 14 18 31

1.25N 2.00 2 3 4 6 12

2.00N 0.50 0 1 1 3 7

Quadratic probing 1.05N 21.85 15 35 50 98 318

1.25N 5.43 4 9 12 23 78

2.00N 2.13 1 3 4 8 26

Table 4.1. Statistics for a single run of querying the chaining and open ad-
dressing hash tables with different space constraints. The number under each
percentage indicates how many probes were required for that percentage of
threads to answer their queries. The number of buckets used by chaining for
table sizes 1.05N , 1.25N , and 2N was 0.1N , 0.5N , and 2N , respectively.

binary search with shuffled queries and can be faster than even the binary search

with sorted queries.

We can see why chaining does so well against quadratic probing by taking

statistical distributions on the number of probes required to answer a query for

both hash tables (Table 4.1). Both types of hash tables were each built with the

three different space constraints. Each hash table configuration was built twice

with 10,000,000 items; the first was queried with all of the input keys, while the

second was queried entirely with keys that were not present in the table. The

number of probes in the chaining case does not include the two memory reads

required to determine bucket locations and lengths.
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While chaining has a higher median when all of the query keys can be found

in the table, it is far more robust at distributing its items than quadratic prob-

ing. This is evident in the maximum number of probes required to complete all

of the queries, which is much lower. For the 1.05N case, its probe distribution

skews upwards when none of the queries can be found, resulting in a decrease

in performance. Conversely, the probe distribution skews downwards for the 2N

case because many of the queries land in buckets that are empty, resulting in the

faster queries. The robustness of the 1.25N(B = 0.5N) case is shown by how the

distribution did not change at all between the two trials.

On the other hand, the probe distributions for quadratic probing always skews

upward as the percentage of bad queries increases, regardless of the table size. This

allows chaining to gain the performance advantage for the 1.05N and 1.25N cases.

Despite requiring a lower average number of probes to answer a query in the 2.0N

case, where all queries can be found, chaining still performs significantly worse on

the GTX 470, which is possibly due to the extra memory accesses required to grab

the bucket information.

An interesting thing to note is that the average number of queries required to

answer a probe when none of them can be found is the average length of each

bucket. The same isn’t true for the case when all of the queries can be found;

the average is lower for 1.05N because the threads can short-circuit upon finding

their query keys, and higher for 2.0N because the threads always hit an occupied

bucket.

4.4 Limitations

Modifying the table is difficult because the buckets are tightly packed, with

each bucket butting up against its neighbors. Removals can be performed by clear-

ing the slot of the entry to be deleted, but this would not decrease the query probe

lengths because the bucket sizes cannot be changed without affecting neighboring

buckets. Extra work could be done, however, to move dead slots to the end of each
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bucket. Items could be inserted into these dead slots, but they cannot be inserted

into a full bucket without rebuilding from scratch.

Temporary storage is required during construction to store which bucket each

item falls into. While it doesn’t need to be stored after its use, the extra space it

requires prevents building chaining hash tables for larger input sizes with looser

space constraints.

Variability in the length of probe sequences is smaller than for quadratic

probing, leading to more robust retrievals. However, the number of probes required

to answer a query can still get fairly high for more compact tables.

4.5 Summary

We introduced a method for building chaining hash tables that trades the costs

of faster construction and smaller table sizes with more expensive retrievals. It

provides a good alternative to using a radix sorted array: the extra bucketing step

we use allows us to replace the binary search with an array traversal, where the

length of each traversal is typically smaller than the length of the corresponding

binary search. It is consistently better than using open addressing on the GTX 280,

and retains a performance advantage on the GTX 470 when using compact hash

tables. If the size of the table is unimportant, using open addressing methods makes

much more sense because of the significant boost in performance they provide.

However, while its retrievals are more robust to outliers than the open address-

ing schemes we discussed previously, chaining hash tables still require a relatively

large and variable number of probes to answer its queries for compact tables. The

methods we discuss in the following chapters address this by making different

trade-offs from chaining, utilizing a slow construction algorithm to guarantee that

the retrievals will be fast.
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Chapter 5

Two-level cuckoo hashing

As we have seen in previous chapters, the performance of open addressing methods

like quadratic probing and double hashing is highly dependent on the occupancy

of the table: compact tables result in skyrocketing probe sequence lengths. Cuckoo

hashing addresses this by limiting the number of slots an item can be located in,

guaranteeing that all items can be found with a small, constant number of probes.

One big problem with cuckoo hashing, however, is that it can fail to insert items,

requiring that the whole table be rebuilt from scratch with new hash functions.

In this chapter, we look at a method of reducing the cost of failure by using a

two-level hash table. Our first level works similarly to chaining, which partitions

the items into smaller buckets. We then build cuckoo hash tables for each of these

smaller buckets individually. The effects of failing to build the cuckoo hash table

for one bucket are then limited to rebuilding the cuckoo hash table for just that
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Figure 5.1. Cuckoo hash table with three subtables, each with its own hash
function (left). Every key is assigned one slot in each subtable (center). The
construction algorithm finds a conflict-free configuration where each item resides
in one of its possible slots (right).
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one bucket. This scheme reduces the cost of failure while still providing the same

constant-time retrievals guaranteed by regular cuckoo hashing.

The parameters we chose for our implementation allow the data structure to

be constructed at interactive rates for millions of items, use approximately 1.42N

space for N pairs of keys and values, and limit the number of global memory

accesses required to answer any query to just four. We found it to be more efficient

than regular open addressing and chaining on the GTX 280, but worse on the GTX

470; the version of cuckoo hashing we present the next chapter tackles cuckoo

hashing differently and does not suffer from the same issue.

We give an overview of our algorithm in Section 5.1, giving an introduction

to cuckoo hashing and describing our solution for parallelizing it. We go into the

details of the construction of a basic hash table that stores a single value for each

key in Section 5.2, then briefly describe how to extend our construction algorithm

for more specialized hash tables in Section 5.3. We discuss our results in Section 5.4

and our method’s limitations in Section 5.5. Finally, we close with some thoughts

in Section 5.6.

5.1 Overview

Like other open addressing methods, cuckoo hashing uses a table consisting of

ST > N slots to store N items, with each slot capable of holding a single key-value

pair from the table. The key difference is how cuckoo hashing handles a collision:

instead of continuing to search for an empty slot like quadratic probing, it instead

evicts items from the table to make room, forcing them to be reinserted elsewhere.

We use a variant where the cuckoo hash table is broken into H equally-sized

subtables, each associated with its own independent hash function. Items can hash

into one location in each subtable, but they are always located in exactly one slot

once inserted. This limitation guarantees that an item can be found after checking

only H locations; typically H is set to either 3 or 4. Figure 5.1 shows an example

of a cuckoo hash table using three subtables.
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The sequential construction algorithm inserts items one by one. The current

item being inserted first checks its H slots to see if any of them are empty, immedi-

ately inserting itself if one is available. If not, it evicts one of the items occupying

one of its slots and takes the slot for itself. This starts a recursive process where

the evicted item must be reinserted into the table following the same procedure.

Although this process might continue forever without finding a location for every

item with an unfortunate choice of hash functions, the probability of this is prov-

ably small when using two hash functions, and empirically unlikely using more

hash functions. Intuitively, moving the items during an insertion allows items to

flow toward less contested slots in the table.

We modified the standard cuckoo hashing algorithm to work in parallel, allow-

ing all of the key-value pairs to be inserted into the structure simultaneously. For

simplicity, we assume that a thread manages the same key-value pair during the

entire process and is responsible for finally storing it in the table. The main issue

is to define the semantics of parallel updates correctly, making sure that collisions

between items are properly handled.
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At the beginning of every iteration, all threads managing items that have not

yet been stored simultaneously write their keys into the same subtable using the

associated hash function; CUDA semantics ensure that exactly one write will suc-

ceed for each slot that is written into. We then invoke a thread synchronization

primitive to ensure that all threads have had a chance to insert their items. Any

threads expecting their keys to be in the subtable then check to see if this is true; if

not, the threads move onto the next iteration and try again. The procedure visits

each subtable in round-robin order, wrapping back to the first subtable once all

of the others have been visited. This stops once all keys are placed or too many

iterations occur; in the latter case, we assume it won’t stop and restart with new

hash functions. An example of the process is shown in Figure 5.2.

This procedure is efficient for small datasets, but GPU performance can suffer

as the input size increases for two reasons. First, the hash functions distribute

items as evenly as possible into the table, potentially sending nearby input items

to distant locations in the structure. Because hash tables for reasonably-sized

datasets must reside in global memory, every iteration of the construction incurs

highly uncoalesced memory accesses. Second, the algorithm can fail to insert items

and require the whole table be rebuilt from scratch, even if only one item failed to

be stored.

We address these issues by using a two-level hash table, shown in Figure 5.3.

Our first level partitions the input items into smaller buckets using a hash function

g(k). We then build a cuckoo hash table for each bucket in parallel, with a different

CUDA thread block handling each bucket. This allows us to build each cuckoo

hash table in shared memory, reducing the cost of the memory accesses incurred

during construction. Moreover, it mitigates the cost of a cuckoo hashing failure

since each cuckoo hash table is independent: failing to build one does not cause

the others to be rebuilt from scratch.
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5.1.1 Parameters

Capacity of the buckets for the first level must be set so that each individual

cuckoo hash table can fit within shared memory; again, this lets all threads in

the same thread block work together to build the cuckoo hash table for a single

bucket. Thread blocks may have either 16 kB or 48 kB available, depending on

the compute capability of the GPU. In practice, less than this is actually usable

by a kernel, but it still allows cuckoo hash tables containing several thousand slots

to be created.

Setting this number low produces cuckoo hash tables that have fewer items,

which tend to take fewer iterations to build. This is ideal for increasing construction

rates, since it allows thread blocks to vacate the GPU more quickly and allow other

thread blocks to build their cuckoo hash tables. It also limits the number of threads

that are waiting for the table to be constructed: even if one item is unplaced, the

entire thread block must continue iterating.

Alternatively, it can be set higher to promote more compact hash tables. How-

ever, there is a hard limit on the size of a thread block, which is 512 or 1024 threads

(again, depending on the GPU). Allowing a bucket to hold more than these num-

bers requires the threads to juggle multiple items during insertion, which increases
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the construction time. For performance, we settled on setting the capacity, denoted

C, to match these limits.

Bucket occupancies would ideally be as close to C pairs as possible without

being overfilled since this requires redistribution with a new hash function. How-

ever, it is difficult to achieve this without tailoring a specific g(k) for every given

input. To achieve fast construction times, we instead rely on randomly generated

hash functions and aim to fill the buckets to a percentage of their actual capacity;

we denote the target percentage as T . Aiming for a lower T makes it less likely

that any given hash function will assign too many items to any given bucket, but

increases the amount of memory required by the hash table.

C and T are directly related because bigger buckets can more reliably support

a higher average occupancy without overfilling. Empirically, we found that setting

T = 80% when C = 512 overfilled buckets on only 0.5% of the trials we ran when

building a table for 5 million random key-value pairs. We found that it was possible

to maintain a similar failure rate while setting C = 1024 or C = 2048 and aiming

for target average occupancies of T = 85% and T = 90%, respectively. We tested

sizes up to C = 8192, which allowed us to reliably hit occupancies of 95%, but

settled on T = 80%.

After setting both C and T , the number of buckets we require can be computed

as B = N
C·T .

The number of hash functions used for the cuckoo hash tables determines how

many slots an item can choose from when being inserted into the hash table. Using

more hash functions makes the construction process easier because there are more

ways to resolve collisions, which makes it possible to make more compact hash

tables. However, it increases the number of probes required to answer a query and

decreases the rate at which retrievals can occur.

For H = 2, the expected maximum number of steps required to insert an item

is O(lgN). A recent result shows that the expected maximum number of steps

required to insert an item can be polylogarithmic for sufficiently large H, and
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it is believed that the expectation is actually logarithmic; Frieze et al. [15] have

more background and details. Nonetheless we find that the number of iterations

is reasonable in practice.

One major issue with using only two hash functions is that the cuckoo hash

table must have slightly more than 2N slots. Using three or four functions drops

the minimum table size to around 1.1N or 1.03N slots, respectively [10]. The

extra probes required when using more hash functions are easily balanced out by

the efficient memory usage, so our cuckoo hash tables use H = 3. Because it is

very difficult to build near-minimal hash tables, we introduce some slack and set

the size of each cuckoo hash table to be Scuckoo = 3 · (N
4

+ N
8

), producing hash

tables that are slightly larger than 1.1N .

For performance reasons, we use the same size for all of the cuckoo hash tables

regardless of the number of items actually contained in each bucket. While it

wastes space when buckets are underfilled, the constant size prevents the extra

bookkeeping needed to track where each bucket’s cuckoo hash tables are located

in memory, which requires reading extra memory locations during retrieval.

The overall table size can be calculated by the formula Scuckoo

C·target . Using H = 3,

C = 512, and a target occupancy of 80% results in tables of size Scuckoo = 576,

giving an overall table size of about 1.42N , while using C = 1024, a target load of

85%, and Scuckoo = 1152 produces a table of size 1.33N .

5.2 Basic hash tables: One value per key

We begin by discussing the implementation of a basic hash table, which stores a

single value for each key. The input consists of pairs of 32-bit keys and values,

where none of the keys are repeated; we discuss how to handle repeated keys

in Section 5.3. Note that a 32-bit value could represent an index into another

structure, allowing a key to reference more than just 32 bits of data. We build

the table in two phases: Phase 1 partitions the pairs into the smaller buckets, and

phase 2 builds cuckoo hash tables for each bucket in parallel.
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Algorithm 5.2 Distribution of input into buckets containing at most C pairs each

1: estimate number of buckets B required

2: allocate output arrays and scratch space

3: repeat

4: set all bucket size counters count[i] = 0

5: generate hash function g(k)

6: for all k ∈ keys in parallel do

7: compute g(k) to determine bucket bk containing k

8: atomically increment count[bk], learning internal offset[k]

9: end for

10: until all count[i] ≤ C

11: perform prefix sum on count[ ] to determine start[ ]

12: for all key-value pairs (k, v) in parallel do

13: store (k, v) in shuffled[ ] at index start[bk] + offset[k]

14: end for

5.2.1 Phase 1: Partitioning the input pairs

Phase 1 distributes the pairs into small buckets containing at most C pairs each

using a hash function g(k). We follow the procedure described in Algorithm 5.2

and illustrated in Figure 5.4, launching kernels that use one thread for each input

pair. Two arrays in global memory are produced for phase 2: shuffled[ ], which

contains the input keys and values swizzled together so that each bucket’s contents

are contiguous in memory, and start[ ], which indicates where each bucket’s data

starts in the first array. This scattering operation allows blocks in phase 2 to

perform coalesced memory reads while building the cuckoo hash tables.

The hash function, g(k), is a linear polynomial of the form:

g(k) = (a · k + b) mod p mod B

Here, a and b are 16-bit integer constants and p = 1900813 is a prime number

larger than the number of buckets. If we find that g(k) overfills any bucket, we
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Figure 5.4. Phase 1 breaks the input (top) into small buckets and rearranges
the input so that each bucket’s contents are contiguous in memory (bottom).
Threads first take the keys and figure out which bucket they hash into, repre-
sented by the gray squares. Counters tracking each bucket size are atomically
incremented (red) and used to give pairs an ordering among all other pairs
within the same bucket. A scan operation determines where each bucket’s data
starts (blue), which are added to the offsets to determine where in the array the
item goes (green). Items are then scattered into the proper locations (cyan).

restart the process with new a and b. Interestingly, we found that setting a = 1 and

b = 0 for the first attempt worked well for many of our datasets. Even though it

is not random, it seems to work and provide a small, but noticeable, improvement

in our retrieval times. For subsequent attempts, we just generate two random

numbers.

After the number of buckets has been decided, we allocate memory for the

phase:

• shuffled[ ] stores all of the items after they have been scattered into their

buckets for phase 2.

• start[ ] determines where each bucket’s data starts in shuffled[ ].

• count[ ] stores the number of items falling in each bucket.
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• offset[ ] stores each key-value pair’s position inside its bucket, relative to the

other pairs.

Distribution of the pairs into the proper buckets is performed by a series of

kernels, where each thread manages a single input pair. We first launch a kernel to

perform steps 6–9 of Algorithm 5.2, which determines how many pairs hash into

each bucket. Each thread is given the same constants a and b, packed into one

32-bit integer, allowing all threads to construct g(k) and compute which bucket

their key k will hash into. It then atomically increments the relevant counter

count[g(k)] and saves the previous counter value1. If any counter is found to

exceed C, a global error flag is set to show that a new hash function is needed and

the process is restarted with a new g(k).

A prefix sum is then performed on the counters using the CUDPP library [20],

effectively marking off a contiguous set of indices for each bucket’s data in shuffled[ ].

Threads finally scatter their items into shuffled[ ] by combining the offset given by

the atomic increment and the bucket data locations given by the prefix sum.

5.2.2 Phase 2: Parallel cuckoo hashing

Phase 2 works on a local scale, independently building a cuckoo hash table for each

of the buckets in shared memory; the process is shown in Algorithm 5.3. The bulk

of this phase is performed by a single kernel, with each thread block building the

cuckoo hash table for a different bucket. This phase produces the only two global

memory arrays needed by our final structure: seed[ ], which contains the seed used

to generate each bucket’s hi(k), and cuckoo[ ], which contains all of the cuckoo

hash tables created for every bucket. Every slot in cuckoo[ ] is initialized with

a special constant ∅, which flags a slot as being vacant and prevents answering

queries incorrectly2.

1For GPUs with caches, it can be highly beneficial to pack the counters for multiple buckets
into a single 32-bit unsigned integer. Since every thread is hitting the same small number of
counters, they are likelier to stay within the cache if the amount of memory used by the counters
is small. When this happens, the step can be sped up considerably.

2We chose 0xffffffff, the maximum value of an unsigned 32-bit integer.



66

Algorithm 5.3 Parallel cuckoo hash table construction using three subtables

1: initialize the cuckoo[ ] array

2: allocate final arrays

3: generate a set of random 16-bit integer seeds

4: for all buckets b in parallel do

5: while the cuckoo hash table has not been successfully built do

6: generate the hi(k) using one seed

7: pre-compute hi(k) for all keys k

8: while any k is uninserted and failure is unlikely do

9: write all uninserted k into slot g1(k)

10: synchronize threads and check subtable T1

11: write all uninserted k into slot g2(k)

12: synchronize threads and check subtable T2

13: write all uninserted k into slot g3(k)

14: synchronize threads and check subtable T3

15: end while

16: end while

17: write subtables T1, T2, T3 into cuckoo[ ] and the final seed used into seed[b]

18: end for

The hash functions used by the cuckoo hash tables are similar to g(k), taking

the form:

hi(k) = (ai · k + bi) mod p mod S

Here, S is the size of a single subtable. Each hi(k) uses its own ai and bi; all

are generated by XORing a single 16-bit integer seed with different constants3.

This cuts down the number of memory accesses required to retrieve a bucket’s

hash functions to just one when answering queries. While this produces a set of

weak hash functions, they worked well in practice and allowed most of the cuckoo

3We used the arbitrary set (0xffff, 0xcba9, 0x7531, 0xbeef, 0xd9f1, 0x337a).
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hash tables to be built after a single attempt. The question of what implementable

hash functions to use for cuckoo hashing for provable performance guarantees is a

current research topic in theoretical computer science; see the original paper [34]

for more on the theory and practice of the choice of hash function for cuckoo

hashing, and subsequent work [30] for an analysis of why weak hash functions

generally perform well in practice.

Before launching the kernel, the CPU prepares by generating a random set of

seeds to pass in; this allows each thread block to make several attempts to build

its cuckoo hash table without exiting the kernel for new hash functions. Because

each table is built independently, the seed chosen by one bucket may be different

than the one chosen by another and must be saved.

Cuckoo hashing is performed by each thread block using the parallel construc-

tion procedure sketched out in the previous section. Pairs within the bucket are

distributed evenly across all of the threads. Shared memory is used as a tempo-

rary storage for building the cuckoo hash tables, which are written out to global

memory once built.

The code snippet in Listing 5.1 shows how a thread managing at most one pair

prepares for each construction attempt; the code can be generalized using for loops

to iterate through all of a thread’s pairs if necessary. We suggest using templatized

code and loop unrolling to prevent unnecessary branching when possible.

At the beginning of every attempt, a new seed is chosen and used to create

the constants for all of the hi(k). Threads begin by generating the constants used

by the hi(k), then precompute and store the subtable locations each of their keys

hash into. They also keep track of which subtable the key should be located in,

which can be invalidated when another key overwrites it during insertion.

Listing 5.2 shows the process threads follow to perform the parallel construc-

tion. Variables with the sh prefix are located in shared memory. During this

process, only keys are being written into the subtables; values are written only af-
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Listing 5.1. Code snippet showing how threads prepare to perform cuckoo
hashing with three subtables and each thread manages at most one pair.

1 unsigned s e ed index = 0 ;

2 do {

3 // Use one seed to c r ea t e 6 hash func t i on cons tan t s .

4 short random number seed = random numbers [ s e ed index ++];

5

6 unsigned cons tan t s 0 = random number seed ˆ 0 x f f f f ;

7 unsigned cons tan t s 1 = random number seed ˆ 0xcba9 ;

8 unsigned cons tan t s 2 = random number seed ˆ 0x7531 ;

9 unsigned cons tan t s 3 = random number seed ˆ 0 xbee f ;

10 unsigned cons tan t s 4 = random number seed ˆ 0 xd9f1 ;

11 unsigned cons tan t s 5 = random number seed ˆ 0x337a ;

12

13 // Figure out what index the key−va lue pa i r has in each s u b t a b l e .

14 uchar index x = ( ( cons tan t s 0 ∗ key + cons tan t s 1 ) % kPrime ) % S ;

15 uchar index y = ( ( cons tan t s 2 ∗ key + cons tan t s 3 ) % kPrime ) % S ;

16 uchar index z = ( ( cons tant s 4 ∗ key + cons tan t s 5 ) % kPrime ) % S ;

17 uchar i n s u b t a b l e = kInva l idSubtab l e ;

18

19 // Perform cuckoo hashing .

20 . . .

21 } while (∗ s h h a s h i s n t b u i l t && seed index < MAX NUM SEEDS) ;
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Listing 5.2. Code snippet for performing cuckoo hashing using three subtables
when each thread manages at most one pair.

1 for ( i t e r a t i o n = 1 ; i t e r a t i o n <= MAX ITERATIONS; ++i t e r a t i o n ) {

2 i f ( threadIdx . x == 0) ∗ s h h a s h i s n t b u i l t = 0 ;

3

4 // Keep t r y i n g the s u b t a b l e s u n t i l i t s u c c e s s f u l l y s t a y s in .

5 i f ( h a s p a i r && i n s u b t a b l e == kInva l idSubtab l e ) {

6 s h s u b t a b l e 1 [ index x ] = key ;

7 i n s u b t a b l e = 1 ;

8 }

9 sync th r ead s ( ) ;

10 i f ( h a s p a i r && i n s u b t a b l e == 1 && s h s u b t a b l e 1 [ index x ] != key ) {

11 s h s u b t a b l e 2 [ index y ] = key ;

12 i n s u b t a b l e = 2 ;

13 }

14 sync th r ead s ( ) ;

15 i f ( h a s p a i r && i n s u b t a b l e == 2 && s h s u b t a b l e 2 [ index y ] != key ) {

16 s h s u b t a b l e 3 [ index z ] = key ;

17 i n s u b t a b l e = 3 ;

18 }

19 sync th r ead s ( ) ;

20

21 // I f overwr i t t en , another i t e r a t i o n i s needed .

22 i f ( h a s p a i r && i n s u b t a b l e == 3 && s h s u b t a b l e 3 [ index z ] != key ) {

23 ∗ s h h a s h i s n t b u i l t = 1 ;

24 i n s u b t a b l e = kInva l idSubtab l e ;

25 }

26 sync th r ead s ( ) ;

27

28 i f (∗ s h h a s h i s n t b u i l t == 0) {

29 break ;

30 }

31 sync th r ead s ( ) ;

32 }
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ter the subtables have been successfully built. Threads not assigned a pair remain

idle.

Each thread begins by writing each of its keys into the first subtable and record-

ing that its keys should be in the first subtable. At this point, other threads may

have overwritten its keys. After synchronizing, each thread checks if its keys are

still in the subtable. Overwritten keys are then written into the next subtable and

recorded as being there. After synchronizing again, only keys which are expected

to be in the next subtable are verified; because the previous subtable wasn’t writ-

ten into, their status couldn’t have changed. If there are still unstored keys in the

bucket after visiting all of the subtables, all threads return to the first subtable

and continue the process. From this point on, previously inserted keys could be

overwritten and all keys expected to be in the current subtable have to check after

synchronization.

This process continues with all threads iterating through the subtables in

round-robin order. Using C = 512 and T = 80%, we found that tables needed

an average of 5.5 iterations to finish, with fuller tables requiring more iterations.

For these settings, we assume that the hi(k) we chose will never allow the process

to complete after 25 iterations and declare failure. We restart the process for the

bucket with all new hi(k) and empty subtables. Note that this restart occurs in-

dependently of all of the other thread blocks, preventing a stray item from forcing

a rebuild of the entire data structure. Only a few buckets fail to build with their

first hash functions, and they usually succeed after restarting once.

Once all keys have been successfully inserted into the cuckoo hash table, threads

write out information back from shared memory into global memory. First, threads

write the subtables into cuckoo[ ], with values stored immediately after their re-

spective keys; this allows them to be read together during retrieval. Finally, the

first thread of each block writes out the seed needed by the bucket for its hi(k)

into seed[ ].
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Our final structure contains four things: the total number of buckets B, the

two constants for h(k) stored as a single 32-bit integer, the cuckoo[ ] array, and the

seed[ ] array. Figure 5.5 gives an overview of the procedure when performed on an

actual dataset.

5.2.3 Retrieval

Retrieval of a query key k can be performed on the hash by first determining which

bucket a query key falls into using g(k); the constants required are passed into the

GPU as kernel arguments. The seed for the bucket is then read from seed[ ] and

used to recreate the hi(k). Each hi(k) is tried in order until either the key is

found in the bucket’s cuckoo hash table, which returns the key’s value, or until all

possible locations have been checked, which results in the special constant ∅ being

returned to indicate that the query key wasn’t found. The maximum number of

global memory reads when using three hash functions is four: one for the seed,

and three for probing the cuckoo hash tables.

5.3 Extending the basic hash table

The algorithm can be adapted to handle multiple copies of the same key in the

input, leading to useful hash table specializations. Each specialization stores each

key only once in the data structure, regardless of how many copies there are. The

multiple values are either stored in an auxiliary array, or ignored entirely.

Phase 1 proceeds in almost exactly the same way as before, with g(k) directing

all pairs with the same key into the same bucket. As a result, it is possible for each

bucket to end up with more than C pairs; to handle this, we relax the limitation and

instead require that a bucket receives no more than C unique keys. Unfortunately,

there is no easy way to check this until we repeatedly fail to build a bin’s cuckoo

hash table in phase 2; in these cases, we have to restart from scratch with a

new g(k). The likelihood of this actually happening is relatively low because the

number of buckets is determined by the total number of key-value pairs, effectively

lowering the number of unique keys assigned to each bucket.
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Figure 5.5. View of the memory when building a hash table for a voxelized
Lucy model, colored by mapping x, y, and z coordinates to red, green, and blue
respectively (top left). The 3.5 million voxels (top right) are input as 32-bit keys
and placed into buckets of ≤ 512 items, averaging 409 each (center right). For
clarity, the buckets are separated in this diagram, but are actually stored tightly
by the algorithm. Each bucket then builds a cuckoo hash with three sub-tables
and stores them in a larger structure with 5 million entries (bottom right).
Close-ups follow the progress of a single bucket, showing the keys allocated to
it (center left; the bucket is linear and wraps around) and each of its completed
cuckoo sub-tables (bottom left).



73

The mechanics of phase 2 are somewhat different because different threads can

have copies of the same key. Like before, threads insert all of their keys into the

same subtable every iteration; any copies of the same key will always be written

into the same slot. In these cases, we consider all copies to have been successfully

stored as long as one copy stays in the subtable after the iteration. Conversely, if

the single key instance is overwritten on a subsequent iteration, all copies of the

key are evicted. This is already implicitly handled by the code shown in Listing 5.2

since subtables store only keys; the subtables don’t track which specific pair the

key belongs to. In the end, the cuckoo hash table will contain exactly one copy of

each key.

With these modifications, further processing can be done to specialize the table.

Sets are basic data structures for storing lists of non-repeated elements; a typical

operation is to check if some element is a member of the set. After building our

hash table with a list of input keys, membership in the set can be checked by

querying the hash table with the key.

Compacting hash tables extend sets, counting the number of unique keys in

the input and assigning a unique ID to each, which effectively “compacts” the

input. The compacting hash table consists of a hash table and a compacted list

of the unique keys; this combination allows O(1) translation between the IDs and

the keys in both directions. It is most useful for memory-intensive applications

where a lot of data is stored on a per-key basis: it determines how big an array

is needed to store the data, and directs each unique key to a different location in

the array. One typical scenario is first generating or selecting keys in parallel, and

then counting the number of unique keys created and compacting them into an

array.

When building a compacting hash table, cuckoo[ ] is initialized differently. In-

stead of filling the entire array with ∅, we initialize the half dedicated to storing

values with zeros. Construction assigns all keys a value of one, so that only valid

keys in the cuckoo hash tables have a non-zero value. Once cuckoo[ ] has been



74

written out to global memory at the end of phase 2, we post-process it by doing

a parallel prefix sum over the values. This creates a unique value from 0 to k − 1

for every valid key stored in the hash table, where k is the number of unique keys.

The compacted list can be created by writing out each key to a separate array into

the slot identified by its ID.

Together, the array of unique keys and the hash table gives a mechanism for

translating between keys and their indices in constant time, in both directions. We

call this a two-way index. Of course, a two-way index could also be constructed by

compacting a sorted list of keys. But while the sorted list version can also translate

indices to keys in constant time, translating keys to indices would require a binary

search.

Multi-value hash tables allow keys to have multiple values, which is represented

in the input by pairs with the same key. These are useful for applications that

require aggregating multiple values for the same key in a single structure. We can

construct it using the shared memory atomic operations available on GPUs with

compute capability 1.2.

The multi-value hash table stores an auxiliary array, values[ ], with all of the

values rearranged so that all of a key’s values are contiguous in memory; querying

the hash table returns how many values a key has and the location of its first

value in values[ ]. Specifically, our parallel multi-value construction produces a

hash table in which a key k is associated with a count ck of the number of values

with key k, and an index ik into a data table in which the values are stored in

locations ik . . . ik + ck − 1.

Construction of multi-value hash tables is more complicated because we need

to lay out the values[ ] array, but the process is analogous to the one used in Phase

1; the main difference is that it all occurs in shared memory within a single thread

block (Figure 5.6).

Once the cuckoo hash table has successfully inserted all of the keys, the cuckoo

hash table contains exactly one instance of each key. To count how many values
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Figure 5.6. Laying out the values[ ] array for a multi-value hash table in shared
memory, where the two keys k1 and k2 each have multiple values. Threads
managing each value atomically increment a counter associated with its key
(red), storing the previous counter value for an ordering among the key’s other
values. The counters themselves are then atomically added to another counter,
indicating where each key’s values should start in values[ ]. The ordering and
the key counters can be added together to indicate where each value should be
copied.

each key has, we allocate a shared memory array the same size as the cuckoo

hash table and initialize it with zeros. Threads atomically increment the counter

associated with each of their keys and store the previous counter, giving a relative

ordering for each pair with the same key.

Next, a contiguous chunk of the values[ ] array is reserved for each unique

key. While a parallel prefix sum can be used, we used the simpler approach of

atomically adding the size counters to a separate counter and saving the counter’s

previous value as the index of the key’s first value in values[ ]. Finally, a scattering

operation is performed to write each value into the values[ ] array at the correct

offset.

Afterward, each k is associated with its ik and ck in the cuckoo hash table,

which then gets written to global memory.

5.4 Performance analysis

We use the same testing setup described in Section 2.3.2 to measure the memory

usage, construction speed, and retrieval rates of the hash tables.
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rates for the GTX 280.

5.4.1 Basic hash table

We compare the results with the quadratic probing and chaining implementations

using the same amount of memory as our table using the parameter settings we

described in Section 5.1.1. We also ran the tests on sorted arrays, which can hold

all N items in N space but requires binary searches. We used Duane Merrill’s

key-value radix sort implementation [29]. As with previous chapters, the binary

search with ordered queries serves as a guideline for performance; the binary search

with shuffled queries represents the random-access that we are looking to compare

our hash tables against.

Figure 5.7 shows the insertion and query rates for the data structures on a GTX

280. Radix sort has the highest overall insertion rate because it greatly reduces

uncoalesced input and output by sorting in shared memory and then writing out

data to global memory; our hash algorithm reads data in a perfectly coalesced

fashion but the writes are highly uncoalesced. The retrieval rates are hampered by
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the O(lgN) binary searches, which grew increasingly worse for larger sets: memory

reads were very uncoalesced and most threads required the full set of iterations

to find their pairs, resulting in the lowest retrieval rate amongst all of the data

structures. Chaining has similar insertion rates to radix sort because it uses one

for construction, but the extra time and memory spent allows it to gain much

better retrieval performance.

Our two-level cuckoo hash table has the slowest construction rates, with most of

the effort spent counting the bucket sizes and building each of the cuckoo hashing

tables. However, it has the highest query rates of all of the methods for hash tables

containing more than 100K items because it limits how long probe sequences can

be. Although quadratic probing is also an open addressing method, like cuckoo

hashing, it has better insertion rates because it avoids the extra work we need

to partition the items into buckets and limit the probe sequence lengths. The

trade-off is its poor retrieval performance.

Also plotted are the query rates on the GTX 280 for hash tables created using

our implementation of Perfect Spatial Hashing, which guarantees that any item

can be found after a single probe4. Our space-optimized implementation uses a

binary search to find the optimal size of the offset table, with a typical space usage

of 1.16N . Although it can answer queries by looking at only one location in the

hash table, resulting in rates that match or beat ours, constructing it is a highly

serial process. Insertion rates were omitted from the graph because they were built

on the CPU as a preprocessing step, taking several orders of magnitude longer than

the other methods.

Behavior is completely different on the newer GTX 470; Figure 5.8 shows the

result of performing the same test. Again, the two-level cuckoo hash table has the

worst insertion rates, but the disparity in performance is much more significant.

The drop in the graph is a result of the counting step performed in Phase 1: when

there are smaller input sizes, there are fewer buckets and their global memory

4The timings were taken using older GPU drivers, though the trends should be the same.
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Figure 5.8. Effect of the input size on the insertion (top) and query (bottom)
rates for the GTX 470.

counters can all fit within the L2 cache, allowing extremely fast atomic increments

of the counters. Once the counters no longer fit in the cache, performance severely

drops and never fully recovers. Moreover, the two-level hash table’s query rates

are sub-par compared to the others. Despite its advantage over binary search,

it seems that it is a better idea to use one of the other hash tables on modern

GPUs. Quadratic probing, for example, also performs atomic operations in global

memory for insertion, but it has a good chance of caching many of the entries along

its probe sequences, leading to higher construction and retrieval rates.

This is further shown in Figure 5.9, which shows the effects of querying the

structures with keys that are absent in the data structure. Each test case sends

the same number of queries, but with an increasingly higher percentage of absent

keys. Queries for absent keys cause our hash table to use the worst-case number of

probes, but our overall retrieval rates are only slightly increased; even in the worst
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Figure 5.9. Comparison between the two-level cuckoo hashing table and other
methods when searching for increasing percentages of keys that are not in the
table. The hash tables all use the same amount of memory (1.42N) to hold 10
million items.

case, we need to check only three locations. Binary search times actually decrease

slightly because the searches can terminate faster.

On the GTX 280, our two-level hash table consistently outperforms the other

methods, but it apparently gains no performance increase with the move to the

GTX 470 and ends up performing consistently worse. We guess that this is because

it cannot take advantage of the cache like the other methods. Using this much

storage, chaining and quadratic probing require an average of around 3 probes to

answer queries, making it extremely likely for a cache line to catch all of the probed

locations.

Gaining any sort of advantage in retrievals for the GTX 470 comes only when

the table is more compact, which is where the other hash tables have trouble. This

requires increasing the bucket size and using higher target loads, which results in
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Figure 5.10. Timings examining the effect of repeated keys in the input when
building a compacting hash table containing 10M items. The hash table is
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a large decrease in the construction rates. These are unlikely to be worth the

trade-off unless the table is heavily reused, though.

5.4.2 Hash table specializations

The performance of the compacting hash tables (Figure 5.10) and multi-value hash

tables (Figure 5.11) was tested on datasets of a fixed size, but with an increasing

average number of times a key is repeated. We compared against an equivalent

structure that could be created by compacting a sorted list of the pairs. Hash

table construction initially speeds up a little with the modified algorithm, and then

greatly increases at higher multiplicities. This is mainly due to the extra atomic

operations required; the compacting hash is less affected because it does not use

the extra atomics. It is always slower to construct than the alternative, but the
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Figure 5.11. Timings examining the effect of repeated keys in the input when
building a multi-value hash table containing 10M items. The hash table is
compared against an equivalent structure based around a radix sort. Each key
was queried once for every time the key appeared in the input.

significantly faster retrievals can be worth the extra work for smaller multiplicities,

especially if the table is heavily queried after being built.

5.5 Limitations and trade-offs

The previous sections described our two-level hash table and the parameters we

believe strike the best balance between the construction, retrieval, and space usage

constraints. However, the algorithm has some obvious issues.

Recent GPU architectures negate most of the benefits of our two-level struc-

ture: while our hash table outperforms the other hashing methods on the GTX

280, the advancements in the 400 series allow hash tables that were previously

inefficient to become more efficient.
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Restarts during Phase 1 were uncommon, with hash tables usually able to rebuild

themselves successfully with a single new g(k). For our basic hash table, a restart

was required for 22
25000

trial runs (0.088%) for 1 million random items, and 125
25000

trial

runs (0.5%) for 5 million random items. In both of these cases, construction time

increased by 50%, but they were still within the constraints needed for interactive

applications. It is possible to decrease restarts by lowering the number of average

number of items per bin, at the expense of further space overhead.

Memory usage of the basic hash table is difficult to shrink. The most obvious

way to do so would be to increase the bucket capacity and target load factor; this

had a minor effect on our retrieval timings, but increased the amount of time spent

in construction building the denser cuckoo hash tables. Even better space usage

could come from a dynamic cuckoo hash table size, which allocates tables that are

the exact size required for each bucket. The problem is that extra information must

be stored about each cuckoo hash table’s locations and size, increasing the amount

of time and effort required to build and query the table. Preliminary results showed

that retrieval rates dropped by about 25%, reflecting the extra memory accesses

required.

Subtables inflate probe sequence lengths because their size restricts the num-

ber of items that can be found after a single probe. In contrast, regular open

addressing methods often allow at least half the items to be found with a single

probe.

Specializations of the hash table amplify these issues as the number of unique

keys in the input decreases. Because we can’t easily determine how many unique

keys there are in the input until we attempt to build the cuckoo hash tables, we

end up overestimating the number of bins required and end up with a sparser

structure. As a side effect, expensive restarts become more uncommon: because

the amount of bins allocated depends on the total number of items and not the

number of unique keys, it becomes more difficult to overfill a bucket.
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For space-constrained applications, it could be better to use a combination of

sorting (to build a compacted list of input) and our basic hash table. This way,

the hash table can allocate just enough memory to store the unique keys.

5.6 Summary

We’ve demonstrated a hash table construction that can somewhat deal with the

shortcomings of chaining and open addressing, namely the uncapped number of

probes required to find items in the table. We also introduced a way of extending

the algorithm to allow different hash table specializations to be built. On the GTX

280, our data structure has much higher rates and is more robust at handling hard

to answer queries than the other hash tables we’ve described, at the cost of a more

complicated construction process. This is a useful trade for applications that will

be building the table and querying it very heavily before discarding it.

However, the algorithm doesn’t adapt well to the newer architectures of modern

GPUs. Although its guaranteed O(1) retrievals make it robust against queries that

fail, it doesn’t help when the queries are slower to perform on the GTX 470. In

the next chapter, we explore another way of using cuckoo hashing that is much

more flexible and has better performance than the methods we have explored so

far.
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Chapter 6

Cuckoo hashing with stashes

While our two-level cuckoo hashing table attempts to reduce the effect of a fail-

ure by building many smaller cuckoo hash tables, this is ultimately very costly.

Moreover, its performance does not benefit from the newer GPU architecture like

our other hash table implementations: by its nature, cuckoo hashing must dis-

tribute items through the table to reduce contention for each slot, preventing it

from taking advantage of the cache.

To improve performance, we must instead focus on minimizing the number

of memory accesses performed by the algorithm rather than improving spatial

locality: construction and retrieval performance are limited almost entirely by the

time used for these accesses because they are almost always uncoalesced. This is

already handled in retrievals because cuckoo hashing guarantees a constant worst-

case bound on the number of accesses per lookup, but the construction algorithm

is less clear.

D C A BA C E BD

EE

h (E)
2

h (E)
1

h (E)
3

Figure 6.1. Instead of using subtables, this ver-
sion of cuckoo hashing uses one big table, with
each of the hash functions hi(k) mapping into
every slot.



85

We utilize the lessons learned from our other hash tables to produce a parallel

cuckoo hashing algorithm that avoids most of our previous version’s issues. Results

from the open addressing schemes indicate that the half of initial items can usually

be inserted into the table after a single probe. Although the maximum number

of probes required to insert an item can be high, the majority of threads continue

finding slots relatively quickly. Because the cost of a harder insertion is amortized

with the cost of the cheaper insertions, building the cuckoo hash table directly in

global rather than shared memory is a viable option. This obviates the need for

using a two-tiered scheme and all of the extra complexity it creates, leading to a

faster, streamlined construction.

In this chapter, we introduce a different method of parallelized cuckoo hashing

using one big table in global memory, where the hash functions can map items

to any location in the table (Figure 6.1). Although this exposes the possibility

of a complete rebuild when an item fails to be inserted, we discuss methods for

reducing the chances of this happening to arbitrarily low percentages, including

using a small secondary hash table to catch any items that would trigger a failure.

We give an overview of our algorithm in Section 6.1, then go into the details

of the construction of a basic hash table that stores a single value for each key in

Section 6.2. We briefly describe how to extend our construction algorithm for more

specialized hash tables in Section 6.3, then analyze the hash table’s performance

in Section 6.4 and limitations in Section 6.5. We then summarize our findings in

Section 6.6.

6.1 Single-level cuckoo hashing

The approach we use to parallelize cuckoo hashing differs in significant ways from

the method we introduced in the previous chapter:

• We build the hash table in global memory rather than in shared memory.

Getting into a position where using shared memory was possible required a

lot of extra work and memory traffic to move items to the right locations.
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Figure 6.2. Insertion into the table has each thread managing a different item
after every insertion attempt until it finds an empty slot. This example shows
a thread beginning with the key E (left) and repeatedly swapping instead of
evicting keys in the table, iterating until it finds a slot or gives up (right).

• We stop using subtables and instead allocate all of the hash table’s slots

to one big table. Subtables limit the number of items that could be found

with fewer probes because the number of slots available in the subtables is

artificially restricted.

• Rather than have a thread attempt to repeatedly insert the same item, we

instead have the thread atomically swap the item it is holding with the item

in the slot it wants. This relies on efficient global memory atomic opera-

tion performance, but it essentially allows threads to work independently:

although they still have to wait for the rest of the thread block to finish

inserting their items, they don’t need to explicitly synchronize after every

insertion.

Like our previous version, each of the hash functions is used in round-robin

order: items evicted from slot hi(k) is reinserted into slot hi+1(k). When moved

from its final slot, or when being inserted for the first time, the item uses h1(k)

(Figure 6.2). While the serial algorithm would normally check all of an item’s

locations or randomly select one, our method can reduce the average number of

probes needed for a retrieval by forcing items to prefer their earlier slots.

At every iteration, each thread uses an atomic operation to swap its current

item with the item in the slot indicated by the current hash function. If the slot is

empty (represented by the entry ∅1), then the thread immediately terminates. If

not, the thread must reinsert the item that it removed using the new item’s next

1∅ = (0xffffffff, 0)



87

hash function. To determine which hash function was used, we recompute the value

of all the hash functions and compare against the index of the slot it was evicted

from; this prevents incurring extra memory accesses to store this information.

This process continues until either an empty slot is found or too many iterations

have been taken, at which point we assume that the process will never terminate.

Interestingly, Kirsch et al. [22] found that the number of items hitting this point

is consistently small (typically fewer than four items); our own experiments mirror

their results for cuckoo hash tables several orders of magnitude larger than they

tested. Rather than immediately rebuilding the entire hash table from scratch,

they first attempt to store all of the items that could not be inserted into a small

secondary structure called a stash. It shares many similarities with a CPU’s victim

cache, which catches items evicted from the main cache.

A rebuild is avoided if the stash manages to store all of the items it receives;

when the stash is large enough, the chance of a rebuild is reduced to almost nil.

The trade-off is that both the main hash table and the stash have to be checked

when answering a query. We use them for our cuckoo hash tables because the cost

of a rebuild far outweighs the cost of the additional probes. If any item fails to be

inserted into the stash, however, we must declare failure and trigger a complete

rebuild.

With our base configuration, the hash table uses 1.25N space for N items and

allows each item four choices, guaranteeing that any item can be found after at

most four probes (five if our stash is activated).

6.1.1 Parameters

Our implementation has many parameters that can be tweaked to affect the algo-

rithm’s performance, reducing memory accesses, reducing the storage required for

the table, or even driving the failure rate arbitrarily low.

The hash functions we use are randomly generated and take the form:

hi(k) = (f(ai, k) + bi) mod p mod ST
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See Section 3.1.2 for a discussion on these. The hash functions we use need to

be fast to compute because we repeatedly compute them whenever a thread swaps

keys; previous hash tables were able to compute the functions once and cache the

results. We had good success with two different families of functions.

A regular linear polynomial worked well for our datasets. Rather than aim

for a 2-universal family of functions, which requires using 64-bit values and slower

computations, we aim lower and limit the computations to 32-bit values. ST is

the number of slots in the hash table, while we set p = 334, 214, 459. Each hi(k)

uses its own randomly-generated constants ai ∈ [1, p) and bi ∈ [0, p). For many

datasets, we found that we had better distributions by replacing the multiplication

with an XOR operation and using p = 4, 294, 967, 291; your mileage may vary, but

the results we present later in the chapter are based on these functions. While

both of these families produce a set of weaker hash functions, they do limit the

number of slots under heavy contention and allow the table to be built successfully

in most of our trials.

The number of hash functions is also very important. Using more functions

allows each key more choices for insertion, making it easier to build the table and

decreasing the construction time. However, this increases the average number of

probes required to find an item in the table, increasing retrieval times. This is more

obvious when querying for items not in the structure. Using four hash functions

yields a good balance between all three metrics, though the hash table can easily

be constructed with other numbers of hash functions.

The size of the table affects how easily the construction algorithm can find a

conflict-free configuration of the items. Given a fixed input dataset, bigger tables

have less contention for each slot, reducing both the average length of an eviction

chain and the average number of probes required to retrieve an item.

When memory usage is important, using more hash functions makes it easier

to pack more items into a smaller table. Theoretical bounds on the minimum table

size for differing numbers of hash functions were calculated by Dietzfelbinger et
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al. [10], but we found the smallest practical table sizes with our hash functions

were slightly larger at ∼ 2.1N , 1.1N , 1.03N , and 1.02N for two through five hash

functions, respectively.

The advantage of cuckoo hashing over the other hashing methods becomes more

apparent as the table size approaches the minimum, but it becomes increasingly

difficult to build the table. We suggest using 1.25N space to balance out the

construction and retrieval rates, as well as limit the number of restarts that occur.

The maximum number of iterations tells the algorithm when the insertion

process is unlikely to terminate. Threads usually finish well before reaching a

chain of this length, but the limit must be set carefully as it is the only way for the

algorithm to terminate with a bad set of hash functions. Setting this number too

high greatly increases the amount of time required to acknowledge that a failure

has occurred, but setting it too low will cause the algorithm to declare failure too

early.

There is no theoretical value for the limit, but it is dependent on both the

table size and the number of items being inserted: cramming a large number of

items into a small hash table greatly increases slot contention, resulting in longer

eviction chains. For four hash functions and 1.25N space, we let threads follow

chains of at most 7 lg(N) evictions. For other table sizes, we use an empirically

determined formula to set the number of iterations allowed.

Empirically, we had a thread fail to insert a key into a cuckoo hash table for

10M items only in only 3 out of 10000 trials, where we built hash tables with

different table sizes. However, we did see failures more frequently for small tables

containing 10K items or less, which are more difficult for our algorithm to handle.

The stash has to be designed to catch as many of the items as possible that fail

to be inserted into the hash table. The implementation proposed by Dietzfelbinger

et al. uses a constant-sized array, which can catch a limited number of items that

fail to be inserted into the main table. This is a viable strategy for small stashes,
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but keep in mind that a stash of size 4 will essentially double the number of global

memory accesses required for a cuckoo hash table using 4 hash functions.

We instead use a small secondary hash table as the stash. Each item stash may

be located in exactly one location, determined by a single hash function. As shown

by Fredman et al. [14], a hash table composed of k2 slots has a high probability of

storing k items in a collision-free manner using a random hash function; we use this

approach and set the size of the stash to 101 slots, which has a high probability

of holding up to 10 items without collisions. Our stash is associated with its own

random hash function, which directs each item to exactly one location in the table.

We trigger a full rebuild of the entire table when two items collide in the stash2.

Because the number of items failing to insert themselves into the main hash

table was almost always less than 5, regardless of the number of input items, the

stash was nearly always able to prevent the rebuild and dramatically reduce the

failure rate. While it does add an extra memory access for a bad retrieval, the

very small performance hit is worth the prevention of a complete rebuild.

6.2 Building and querying a basic hash table

We begin by discussing the implementation of a basic hash table, which stores a

single value for each unique key. The input consists of N pairs of 32-bit keys and

values, where none of the keys are repeated. The value could represent indices into

another structure, allowing a key to reference more than just 32 bits of data; we

briefly discuss this in Section 6.3.

6.2.1 Construction

The goal of construction is to produce a data structure consisting of five things:

• cuckoo[ ], the cuckoo hash table itself.

• ST , the number of slots in the hash table.

2 The stash could instead be rebuilt with a new hash function, but a lot of effort would be
expended to find the items currently stored in the stash and move them over. For the GTX 470,
another alternative is to use a linear probing hash table containing 16 slots; a stash this small is
likely to be stored entirely in the cache.
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Listing 6.1. Code snippet for inserting a new item using four hash functions.

1 typedef unsigned long long Entry ;

2 #define get key ( entry ) ( (unsigned ) ( ( entry ) >> 32))

3

4 // Load up the key−va lue pa i r in t o a 64− b i t en try .

5 unsigned key = keys [ thread index ] ;

6 unsigned value = va lues [ thread index ] ;

7 Entry entry = ( ( ( Entry ) key ) << 32) + value

8

9 // Repeat the i n s e r t i o n process wh i l e the thread s t i l l has an item .

10 unsigned l o c a t i o n = hash func t i on 1 ( key ) ;

11 for ( int i t s = 0 ; i t s < max i t e r a t i on s ; i t s ++) {

12 // In s e r t the new item and check f o r an e v i c t i o n .

13 entry = atomicExch(& t a b l e [ l o c a t i o n ] , entry ) ;

14 key = get key ( entry ) ;

15 i f ( key == KEY EMPTY) return t rue ;

16

17 // I f an item was ev i c t ed , f i g u r e out where to r e i n s e r t the entry .

18 unsigned l o c a t i o n 1 = hash func t i on 1 ( key ) ;

19 unsigned l o c a t i o n 2 = hash func t i on 2 ( key ) ;

20 unsigned l o c a t i o n 3 = hash func t i on 3 ( key ) ;

21 unsigned l o c a t i o n 4 = hash func t i on 4 ( key ) ;

22 i f ( l o c a t i o n == l o c a t i o n 1 ) l o c a t i o n = l o c a t i o n 2 ;

23 else i f ( l o c a t i o n == l o c a t i o n 2 ) l o c a t i o n = l o c a t i o n 3 ;

24 else i f ( l o c a t i o n == l o c a t i o n 3 ) l o c a t i o n = l o c a t i o n 4 ;

25 else l o c a t i o n = l o c a t i o n 1 ;

26 } ;

27

28 // Try the s t a sh . I t succeeds i f the s t a sh s l o t i t needs i s empty .

29 unsigned s l o t = s t a s h h a s h f u n c t i o n ( key ) ;

30 Entry r e p l a c e d e n t r y = atomicCAS ( s tash + s l o t , SLOT EMPTY, entry ) ;

31 ∗ s tash was used = 1 ;

32 return ( r e p l a c e d e n t r y == SLOT EMPTY) ;
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• stash[ ], the secondary data structure for catching items that fail to be in-

serted in cuckoo[ ].

• The constants for all i hash functions, ai and bi.

• A flag indicating whether the stash had to be used. If this is off, the number

of probes for a retrieval is unaffected.

We begin by allocating an array of ST 64-bit slots for cuckoo[ ] and an array

containing 101 64-bit slots for stash[ ]. Each slot holds a key-value pair: a key and

its value are stored in the upper and lower 32 bits of the slot, respectively. Moving

them together in this manner allows us to use a single atomic swap to move them

around the table; storing them separately incurs extra work, either to ensure that

they remain together during the insertion process or to insert the value into the

hash table after all keys have been placed.

Construction may require several attempts if the algorithm cannot find a conflict-

free configuration of the items, so we have to reinitialize the hash table at the start

of every attempt. This involves filling both cuckoo[ ] and stash[ ] with the special

entry ∅, which alerts threads that they have found an empty slot. We also gen-

erate random constants for all of the hash functions we are using and reset the

stash flag. The constants and the flag are passed into the retrieval kernel directly

as arguments, so they do not incur extra global memory accesses.

The cuckoo hashing algorithm is then performed by a single kernel (Figure 6.1).

The kernel is launched with N threads, each managing one item at a time from the

input. Recall that threads complete their work when they successfully place their

item (or the item(s) displaced by their item), but a thread block will not complete

until all of its threads are done. Thus we choose a relatively small thread block

size – 64 threads – that minimizes the number of threads within a block kept alive

by a single thread’s long eviction chain.

Using atomicExch() operations, each thread repeatedly swaps its current key-

value pair with the contents of the slot determined by the current hash function.
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The atomic operations guarantee that no items are lost when threads simultane-

ously write into the same slot. If the swap returned an ∅ item, the thread declares

success and stops.

Otherwise, the thread must reinsert the item it evicted. Because hash functions

are used in round-robin order, the thread must figure out which hash function was

previously used to insert it. It calculates the value of hi(k) for all of the hash

functions, then checks which of those functions points to the slot it was evicted

from. The evicted item is then reinserted using the next hash function in the series.

Alternatives to this approach would store the index of the hash function last used

to store the item, but these all have different drawbacks and usually require extra

memory traffic that we want to avoid.

One potential issue with this is that our code snippet short-circuits after find-

ing the earliest match, preventing the item from utilizing its full set of assigned

slots when multiple hash functions return the same value. If h2(k) == h3(k), for

example, the thread will assume that the item was evicted using h2(k) and rein-

sert it using h3(k), permanently locking the item into the slot. It can be addressed

either by advancing to the next function that doesn’t point to the same location,

or by always randomly picking a hash function to use. We just choose to ignore

the problem because it rarely happens; it usually occurred when the hash table

contained only a few hundred slots and didn’t cause any issues. An even rarer

occurrence would lock two keys to the same slot, but we didn’t encounter this in

our tests.

If a thread hits the maximum eviction chain length, it then gets one attempt

to find an empty slot in the stash using its hash function. If it succeeds, a global

flag is set to indicate that the stash is being used and must be checked during

retrievals. Otherwise, we declare failure and start from scratch.

After being built, items can continue to be added to the cuckoo hash table by

following the same procedure, but care must be taken to resize the hash table when

necessary, which requires rebuilding the whole hash table from scratch.
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6.2.2 Retrieval

Retrieval of a query key can be performed on the cuckoo hash table by first checking

all of the locations identified by the hash functions (Figure 6.2). Each location is

checked in order, but a thread short-circuits if it either finds the key early or

encounters an empty slot in the table. Because the hash functions are all used

in order, it is impossible for a key to be located in any of the slots following an

empty slot – otherwise, the query key would have used it3. If the query fails to be

found in the main cuckoo hash table, a “not found” value is returned, signalling

the thread to check the stash (if it is active) before giving up entirely.

6.3 Specializing the hash table

Our single-level cuckoo hash table can be specialized in the same way as the two-

level cuckoo hash table (Section 5.3). In this section, we briefly describe how to

implement the equivalent structures.

Sets can be implemented by changing the construction to eliminate all copies

of a key that are encountered. The input consists of 32-bit keys, which may or may

not be unique. Correspondingly, each slot of the hash table is modified to hold

only 32-bit entries. Similarly to the basic hash table construction, each thread

manages a single key and uses 32-bit atomicExch() operations to swap their key

with the contents of the table. The stopping condition is modified so that a thread

stops upon either finding an empty slot or exchanging its key with another copy

that was previously stored in the table. Once all threads have stopped, multiple

copies of the same key may still be inserted in the table, so a cleanup phase must

occur afterward to erase all copies of a key except the first.

Compacting hash tables can be built by further altering the set construction

algorithm. It returns to using 64-bit slots, which allows pairing keys with their

unique IDs in the hash table. During the cleanup phase, the first copy of each key

in the table is assigned a value of one, with all other slots in the table filled with ∅,

3Allowing deletions from the structure requires disabling this to avoid erroneously claiming
that a query key does not exist in the table.
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Listing 6.2. Code snippet for retrieving an item from the main table using four
hash functions. Failing to find the key here triggers a stash check, if it is active.

1 #define g e t v a l u e ( entry ) ( (unsigned ) ( ( entry ) & 0 x f f f f f f f f ) )

2 const Entry kEntryNotFound = ( Entry )(−1) ;

3

4 // Compute a l l p o s s i b l e l o c a t i o n s f o r the key .

5 unsigned l o c a t i o n 1 = hash func t i on 1 ( key ) ;

6 unsigned l o c a t i o n 2 = hash func t i on 2 ( key ) ;

7 unsigned l o c a t i o n 3 = hash func t i on 3 ( key ) ;

8 unsigned l o c a t i o n 4 = hash func t i on 4 ( key ) ;

9

10 // Keep check ing l o c a t i o n s u n t i l the key i s found , a l l s l o t s

11 // are checked , or i f an empty s l o t i s found .

12 Entry entry ;

13 i f ( ge t key ( entry = cuckoo [ l o c a t i o n 1 ] ) != key ) {

14 i f ( ge t key ( entry ) == kNotFound )

15 return kEntryNotFound ;

16

17 i f ( ge t key ( entry = cuckoo [ l o c a t i o n 2 ] ) != key ) {

18 i f ( ge t key ( entry ) == kNotFound )

19 return kEntryNotFound ;

20

21 i f ( ge t key ( entry = cuckoo [ l o c a t i o n 3 ] ) != key ) {

22 i f ( ge t key ( entry ) == kNotFound )

23 return kEntryNotFound ;

24

25 i f ( ge t key ( entry = cuckoo [ l o c a t i o n 4 ] ) != key )

26 return kEntryNotFound ;

27 }

28 }

29 }

30

31 return g e t v a l u e ( entry ) ;
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Algorithm 6.4 Multi-value hash table construction

1: radix sort the input key and value arrays

2: determine what and where the unique keys are in the sorted key array

3: determine how many values each key has by differencing the locations of con-

secutive unique keys

4: perform a prefix-sum to assign each key a unique ID

5: create an auxiliary array keyInfo[ ] to store the location and number of each

key’s values

6: create a basic hash table using the unique keys and their IDs

effectively identifying which slots have unique keys. A prefix-sum is then performed

over the values, creating a unique value from 0 to k−1 for every unique key stored

in the hash table, where k is the number of unique keys. We use another pass to

interleave the keys with their values in the table, and finally create the compacted

list by writing out each key to a separate array into the slot identified by its ID.

Multi-value hash tables are constructed in a completely different manner

than they were for the two-level hash table. As input, a multi-value hash table

takes in one array of keys and one array of values, where each of a key’s values is

represented as different key-value pairs with the same key. Intuitively, the main

goal during construction is to boil down the input to a single value for each key so

that it can be stored using a basic hash table. The value here is a unique ID that

indexes into an auxiliary array that stores more information about the key. This

process can be adapted to store data other than 32-bit integers.

The multi-value hash table stores two auxiliary arrays: values[ ], which stores

each key’s values contiguously, and keyInfo[ ], which stores the location of every

key’s values and the number of values each has. Construction of the table is detailed

in Algorithm 6.4; the majority of the algorithm is spent pre-processing the input.

We first use a radix sort on the input pairs to rearrange the data, placing all copies

of the same key adjacent in memory. Additionally, all values of each key end up

in a contiguous location within their array; this array is stored as values[ ].
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Next, we examine the sorted keys array to find the indices of the first instance of

each key; these indices also indicate where in values[ ] each key’s values start, and

can be differenced to determine how many values each key has. This information

is stored in keyInfo[ ] as uint2s.

We then create a scratch array of flags indicating whether each key was unique,

then perform a prefix-sum to assign each key a unique ID. These unique IDs are

used to index into keyInfo[ ] and to compact down the unique keys. The compacted

list and their IDs serve as the input for the creation of a cuckoo hash table using

the basic algorithm.

Querying the structure with a valid key first performs a retrieval using the hash

table. The result is then used as an index into keyInfo[ ] to return information

about the key’s values.

6.4 Analysis

We use the same testing rig described in Section 2.3.2, testing on both the GTX

280 and GTX 470. The results we report consist entirely of randomized key-value

pairs.

6.4.1 Parameter effects on the basic hash table

We begin by examining the effect of the input size on the hash table when it is built

with different table sizes, effectively changing how many of the slots are occupied.

Insertion rates are displayed in Figure 6.3; the trends for both GPUs are the same,

ramping up and plateauing. This suggests that the rate of insertion on both GPUs

scales linearly with the input size. Unsurprisingly, building a table with tighter

space constraints is very hard to do; inserting pairs into the hash table using 1.05N

space instead of 2N space drops performance by half.

Query rates are shown in Figure 6.4. The downward trend in the rates as the

table size increases can be easily explained by the increasing average number of

probes required to find an item as the table shrinks: bigger tables have more empty

slots and can short-circuit the retrieval more easily. We see that the rates again
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Figure 6.3. Effect of the input size on insertion rates for cuckoo hash tables with
different space constraints. All of the hash tables used four functions; higher
rates are better.

plateau after a certain point, with the rates being higher on the 470. We again

see the same inexplicable behavior on the GTX 280 that we saw for our chaining

implementation, where the rates peaked on the left and sharply dropped off on

the right for larger input sizes. This is strange because the two hash tables have

completely different memory access patterns.

As expected, cuckoo hashing is highly robust against answering bad queries

(Figure 6.5) and its performance degrades linearly as the average number of probes

approaches the maximum required to answer a query; in this case, 4 probes to check

each of the slots indicated by the hash function, as well as a 5th probe into the

stash if invoked. The glitch in the graph for the GTX 280 for a table of size 2N

corresponds to the performance drop on in Figure 6.4.

Figure 6.6 shows the effect of playing with the table’s size and the number of

functions used to build the table; both of these are closely related. For construction,

hash tables built using any given number of functions suffer larger and larger

performance penalties as the table size approaches the minimum allowed by cuckoo
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hashing. Retrieval rates also drop because the average number of probes required

to find an item increases as the number of empty slots shrinks.

On the other end of the spectrum, the fastest construction time is achieved

using around 4N slots, regardless of the number of input items. Insertion rates

start decreasing after this point because the amount of time required to initialize

the table outweighs the time required to actually perform cuckoo hashing.

The fastest general construction speed is attained when using five hash func-

tions because it offers items more locations to choose from, though the benefit over

using four hash functions is minimal. It also has the slowest retrieval rates when

compared to the other options. However, it may still be practical when minimizing

memory usage is the most important factor for an application, since it can produce

the most compact cuckoo hash tables.
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6.4.2 Comparisons between the data structures

In this subsection, we perform comparisons of the main data structures we have

discussed so far, which includes quadratic probing, chaining, both cuckoo hashing

variants, and a radix sort/binary search combination. We test three different hash

table sizes (1.05N , 1.42N , and 2.0N), representing three possible choices that an

application could make when using the data structures. For each case, we show

the results of testing the data structures on both the GTX 280 and 470, showing

how well construction and retrievals scale with input size, as well as how robust

each method is for dealing with queries that cannot be found in the table.

General trends show that aiming for a more compact hash table often increases

the time taken to build or query the structure, but sacrificing memory often allows

marked improvements in performance. As stated in previous chapters, rates for

the binary search with ordered queries are shown as a guideline for performance;

binary searching with shuffled queries represents the random access that we are

actually looking to compare our hash tables against. When we talk about results

for a plain “binary search”, we specifically mean the shuffled query case.

6.4.2.1 Hash tables using 1.05N space

Figures 6.7 and 6.8 shows performance profiles for both the GTX 280 and GTX

470 for tables of size 1.05N . We omit results for the two-level hash table because

producing a hash table this small is difficult using that scheme: it would require

allocating many large buckets and filling them as close to the bucket’s capacity as

possible, which makes it highly likely that bucket will overfill and require a rebuild.

As we learned in Chapter 3, quadratic probing just does not perform well with

tables this small: the limited number of slots it has available makes it difficult for

the algorithm to terminate both its insertions and retrievals. This results in the

poor insertion and retrieval performance on both GPUs – for smaller input sizes,

it even performs worse than a binary search. Although it performs better than

the binary search for larger input sizes when all of the queries can be found, its

retrieval rate quickly drops when only 20% fail.
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Figure 6.7. Performance profile for the GTX 280 using using 1.05N space,
meant to show trends in the data. Charts show insertion rates versus input
size (top), query rates versus input size (middle), and the effect of bad queries
(bottom).
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In contrast, chaining hash tables can be built quickly at this table size because

it excels at fast constructions for small table sizes: the radix sort it uses as part of

its construction has less work to do and the algorithm has less bucket boundaries

to search for. Moreover, its retrievals are consistently faster than binary search

and quadratic probing, allowing it to work well when an application needs a hash

table that is built and used only briefly.

Like quadratic probing, our single-level cuckoo hashing table has difficulty be-

ing built because of the tight space constraints, resulting in the worst insertion

performance among all of the data structures. However, its retrievals significantly

outperform all of the other methods and it can handle bad queries in a robust

manner. If a compact hash table is required and will be reused many times, the

single-level cuckoo hashing scheme is definitely the right method to use.

6.4.2.2 Hash tables using 1.42N space

We chose to compare all of the data structures using 1.42N space because it is the

default setting for our two-level hash table. Figure 6.9 shows a performance profile

of all of the data structures we have discussed so far on a GTX 280. These graphs

correspond to and continue the discussion started in Section 5.4; see that section

for the discussion about the other data structures’ performance.

Our single-level cuckoo hash table’s insertion performance falls somewhere be-

tween chaining and quadratic probing, which is a good trade-off for the excellent

retrieval performance it provides. In contrast, radix sort provides the best inser-

tion rate, but requires a slow binary search. An interesting thing to note is that

the trends in the insertion rate graph are similar for both quadratic probing and

the single-level cuckoo hashing scheme; this is because they are both open address-

ing methods and work similarly. The two-level scheme does not exhibit the same

behavior because of the bucketing it performs on its first level. The advantage

cuckoo hashing has over quadratic probing is likely due to the way it processes the

collisions: both methods can finish their insertions relatively quickly because 30%
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Figure 6.9. Effect of input size on the insertion (top) and query rates (center)
of the data structures on a GTX 280. Also shown is the effect of searching for
query keys not in a hash table containing 10 million items (bottom). All hash
tables use 1.42N space.
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of the table is unoccupied, but cuckoo hashing can move an item out of crowded

areas much more quickly than quadratic probing can.

Our single-level cuckoo hash table outperforms our two-level hash table for

insertions, reflecting the much simpler and more flexible construction of the new

scheme. Moreover, it is more efficient at handling queries than even the two-level

hash table. Although it uses four hash functions instead of three (like the two-

level scheme), both tables effectively use the same number of memory accesses

to perform a retrieval: in addition to the three probes into the table, the two-

level hash table needs to read the seed used to generate a bucket’s cuckoo hash

functions4. Another factor in the performance is that we aren’t using subtables:

the two-level scheme only allows about a third of its items to be located in the first

subtable, which means that more probes are required on average to find items.

Figure 6.10 shows the equivalent graphs for the GTX 470. Here we see that

quadratic probing and our one level-scheme now have almost identical insertion

performance on the newer GPU architecture, reflecting how the cache can catch

the slots visited by quadratic probing. For retrievals, cuckoo hashing starts off

stronger but eventually merges with quadratic probing, tying for the best retrieval

rates among all of the data structures. Either of these methods would be a good

choice if it is known ahead of time that the queries will consist entirely of the input

keys.

However, the main difference between them is the performance disparity that

arises when the queries start failing. Although both take a performance hit,

quadratic probing takes a larger one, due to the number of probes it requires

to terminate a query in the worst case. Chaining, on the other hand, actually

has an increase in performance as the hash table encounters higher and higher

percentages of bad queries. It also has the second highest insertion rate among the

methods we tested. All things considered, chaining can be a good alternative to

using cuckoo hashing under the right circumstances.

4 We don’t count the probe into the stash because it was unused in the vast majority of cases.
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6.4.2.3 Hash tables using 2N space

We also examine the case where the hash table is twice as big as the input at 2N

(Figures 6.11 and 6.12). Both quadratic probing and the single-level cuckoo hash

table benefit from the larger table size because half of the slots are now empty,

allowing them to terminate both insertions and queries much more quickly. On

the GTX 280, single-level the cuckoo hash table dominates retrieval performance,

both when the keys can and cannot be found in the hash table. For smaller input

sizes, it is still possible that chaining can handle bad queries better than cuckoo

hashing, but chaining’s poor insertion rates make it a very unattractive method to

use. Because more buckets are being used, extra passes are needed by the radix

sort to move the items around during construction, resulting in a performance

degradation. It always seems advisable to use cuckoo hashing, here.

For the GTX 470, the construction rates for both the single-level cuckoo hash

table and quadratic probing completely overtake chaining and approach the speed

at which the radix sort can be performed. Moreover, the retrieval rates for both of

these methods outpace chaining, resulting in a large performance difference when

all of the queries can be found in the hash table.

After the table contains around 500K items, quadratic probing retrieval rates

completely overtake those of cuckoo hashing – it even becomes resistant to failed

queries because it has so many empty slots. Quadratic probing gains the advantage

because our cuckoo hashing implementation uses 4 hash functions, which increases

the worst case number of probes for answering queries; Figure 6.6 shows that

reducing the number of hash functions to two would increase the query rates to be

on par with quadratic probing.

Unlike for the GTX 280, chaining retrievals can overtake both of these methods

if the hash table is queried for many times for keys that aren’t in the table; whether

or not it is a better choice than quadratic probing is, again, dependent on the

application.



109

250

300

350

400

450

500

M
il

li
o

n
s

Radix sort

Chaining

0

50

100

150

512 2048 8192 32768 131072 524288 2097152 8388608

Input size (log scale)

400

500

600

700

800

900

M
il

li
o

n
s

Two-level cuckoo

0

100

200

300

512 4096 32768 262144 2097152 16777216

Input size (log scale)

Quadratic probing

Chaining

Binary search (shuffled)

400

500

600

700

800

M
il

li
o

n
s

Two-level cuckoo

0

100

200

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of failed queries

Chaining

Quadratic probing

Binary search (shuffled)

Figure 6.11. Effect of input size on the insertion (top) and query rates (center)
of the data structures on a GTX 280. Also shown is the effect of searching for
query keys not in a hash table containing 10 million items (bottom). All hash
tables use 2N space.
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6.4.2.4 Summary

Table 6.1 summarizes our findings for the GTX 470; we focus mainly on the 470’s

results because they are the most useful going forward.

6.4.3 Comparisons with the hash table specializations

We tested the performance of our compacting and multi-value hash tables by re-

peatedly building them with datasets of a fixed size, but with an increasingly

higher average number of times a key is repeated.

The compacting hash table was compared against two equivalent data struc-

tures: a structure based around sorted arrays and compacted lists, and our previous

two-level compacting hash table (Figure 6.13).

Both the single-level and two-level compacting hash tables consistently take

longer to build than the radix-sorted structure. For the single-level table, the

biggest gap occurs when there are no duplicates in the list; these differences arise

from the extra work required to process the input keys. Once there is some key

repetition, construction times for both methods drop. Although our single-level

compacting hash table uses nearly the same algorithm, our faster cuckoo hashing

procedure results in significantly higher build rates. Its retrievals also execute

significantly faster than both of the other methods.

The multi-value hash table was compared against the equivalent two-level

multi-value hash table, and a sorted structure based around sorted and compacted

lists (Figure 6.14). To build the latter, we follow the construction procedure for

the multi-value hash table until the construction of the hash table itself. Accessing

the information for each key can then be done by employing binary searches rather

than querying our hash table.

Because construction of our single-level hash table requires an additional step

beyond construction of the sorted structure, our construction times are always

slower. However, our retrievals are consistently faster than binary searching the

structure until it becomes possible for a key to be repeated over two thousand times;
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Quadratic probing

Table size Remarks

1.05N There are better alternatives.

1.42N There are better alternatives.

2N When N > 500, 000, the cache allows it the fastest constructions and

retrievals. It can require a large number of probes to find some items,

though most items require significantly less. Although it handles bad

queries gracefully because the table is half-empty, chaining has better

retrieval rates if queries have a high chance of failing (> 80%).

Chaining

1.05N It has the fastest construction rates, but has slower retrievals because

its buckets are larger. It is useful for situations where a temporary

hash table is needed and used only briefly.

1.42N It has the fastest construction rates when N > 1, 000, 000; the radix

sort slowly gains speed before this point. Quadratic probing and

single-level cuckoo hashing have faster retrievals when the queries can

all be found, but chaining handles bad queries more robustly: it should

be used when queries have a decent failure rate (> 50%).

2N It can’t be constructed or queried as quickly as the other methods,

but it is still useful if the queries have a high chance of failing.

Single-level cuckoo hashing with stashes

1.05N It has the fastest retrievals and slowest construction rates; it’s great if

it is built once and queried many times afterward.

1.42N Cuckoo hashing is faster than chaining for N < 1, 000, 000, but chain-

ing overtakes it for larger N . When queries are likely to succeed, it

has the highest retrieval rates.

2.0N Use it instead of quadratic probing for N < 500, 000 because it has a

higher retrieval rate up to this point.

Table 6.1. Summary of results for the GTX 470.
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Figure 6.13. Compacting hash table timing comparison of construction (top
half) and retrievals (bottom half) on both the GTX 280 and 470. Inputs con-
sisted of 10 million keys with increasing multiplicity on the keys. Each key was
queried once for every time the key appeared in the input.



114

200

250

300

350

400

M
il

li
o

n
s

Sorted structure

0

50

100

1 2 4 8 16 32 64 128 256 512 1024 2048

Average key multiplicity (log scale)

200

250

300

350

400

450

M
ill

io
n

s

Sorted structure

0

50

100

150

1 2 4 8 16 32 64 128 256 512 1024 2048

Average key multiplicity (log scale)

400

500

600

700

800

M
il

li
o

n
s

Two-level MV HT

0

100

200

1 2 4 8 16 32 64 128 256 512 1024 2048

Average key multiplicity (log scale)

300

400

500

600

700

M
ill

io
n

s

One-level MV HT

0

100

200

1 2 4 8 16 32 64 128 256 512 1024 2048

Average key multiplicity (log scale)

Figure 6.14. Multi-value hash table timing comparison of construction (top half)
and retrievals (bottom half) on both the GTX 280 and 470. Inputs consisted of
10 million pairs with increasing multiplicity on the keys. Each key was queried
once for every time the key appeared in the input.
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it seems that binary search has the potential to overtake it for higher multiplicities.

Moreover, our single-level hash table’s size is always 1.25K, where K is the number

of unique keys in the input, while the two-level version’s size is much larger at

1.42N ; as the average multiplicity of each key increases, the two-level multi-value

hash table becomes more and more sparse.

The high plateau in retrieval rates for the GTX 280 likely corresponds to the

peak in Figure 6.4. Because the keys are repeated so many times, the number of

keys contained in the hash table is very small: once a key has an average of 128

copies, the 10M key-value pairs produce a hash table containing less than 78K

items.

6.5 Limitations

The algorithm we described and the parameters we chose strike a good balance

between the construction rates, retrieval times, and memory usage. However, there

are still some drawbacks to be aware of.

Determining which function was used to insert an item requires that a

thread recomputes the values of all of the hash functions for its new key after

every iteration. This gets very costly if the hash function is hard to compute,

reducing the performance of both construction and retrievals. Given the trends in

GPU architecture, specifically the cost of computation versus the cost of a memory

access, the extra computations are likely to remain a better trade-off than storing

extra information in memory.

Restarts are rare, but expensive because the entire table must be rebuilt from

scratch. This effectively multiplies construction time by the number of attempts

needed to build the table. If a consistent construction time is important, the

parameters can be changed to make the table easier to build.

The maximum number of iterations can be hard to pin down. As the table

size approaches the theoretical minimum for the given number of hash functions,

the average number of iterations performed by the construction algorithm rises
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very quickly. If set incorrectly, a thread will iterate far too many times before

using the stash, making the cost of a rebuild even higher.

Sparsity of the compacting hash table becomes extremely high with high key

multiplicity. If space usage is an issue, a procedure similar to the one followed for

the multi-value hash table can be used, where the input is pre-processed using a

radix sort. However, our construction can actually beat the radix sort times with

smaller datasets; performing a radix sort beforehand will guarantee that construc-

tion is always slower.

6.6 Summary

The single-level cuckoo hashing table we’ve introduced in this section is highly

robust and generally performs better than all of the other methods we have previ-

ously discussed. Like the two-level cuckoo hash table, it caps the number of probes

required to find any item in the table. However, it’s much more flexible and over-

comes most of the previous method’s shortcomings, resulting in significantly better

performance in every situation we considered.

Although all of its memory accesses are highly uncoalesced, it performs well

on both older and more modern hardware – it even gets a speed boost that the

two-level cuckoo hash table doesn’t get with the move to the Fermi architecture.

It trades a faster construction for faster retrievals in compact tables, where the

other hashing methods have trouble. On the GTX 280, it consistently has the best

retrieval performance out of the methods we considered.

However, on the GTX 470, the other methods can perform better under the

right conditions. For compact tables, it has the slowest construction but consis-

tently has the best retrieval rates because it spends the time to make all of the

queries easy to answer. For slightly larger hash tables (on the order of 1.42N), the

single-level cuckoo hashing table still performs well, but chaining can outperform

if the hash table is repeatedly queried with keys that can’t be found. Combined

with its faster construction, chaining can be a better option for these situations.
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For even larger hash tables, the cuckoo hash table’s guarantee on the number

of probes can actually become a liability. The results we presented comparing the

single-level hash table always requires using four probes in the worst case, stemming

from the fact that we use four hash functions. Even without this guarantee, the

other methods have a low average number of probes and a small deviation from

it. Moreover, they can take advantage of the cache because of the way that the

elements are stored. In these cases quadratic probing outperforms the cuckoo hash

table. Ultimately, the correct hash table to use for an application is dependent on

how the hash table is to be used.
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Chapter 7

Conclusion

We’ve presented a set of hash tables that are implemented on the GPU using fast,

parallelized constructions. This allows parallel applications to construct them on

the fly rather than having them constructed CPU-side and copied over later. Our

designs are flexible, allowing them to be tailored for different applications. We

examined how they performed under different situations and how well they bal-

anced out the three constraints of memory usage, construction speed, and retrieval

efficiency.

Despite repeatedly incurring uncoalesced memory accesses during retrievals,

they can be queried at high rates and are almost consistently faster than using bi-

nary searches through a sorted array for random-access; for cases where the queries

are completely sorted before accessing the data structures, the binary searches often

perform better than hashing because their memory accesses repeatedly coalesce.

We hope future work will use other hashing algorithms to address different

trade-offs between the metrics, particularly to address building dense hash tables

at fast rates and to optimize for the fastest possible lookup times. We see a few

potential avenues for future work that will make GPU-based hash tables more

useful for the community:

• Our single-level cuckoo hashing implementation is able to take advantage of

the faster atomic operations provided by modern GPUs, but has poor caching
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performance because the hash functions map everywhere in the hash table.

One thing to try would be to allow multiple items to hash into each cuckoo

hash table slot, allowing multiple items to reside in the cache line during

retrievals. We saw the advantage this conferred to linear probing, which

benefited greatly when its probes were entirely cached. Recent work on

cuckoo hashing by Dietzfelbinger et al. [11] discusses this and other methods

for reducing memory traffic, but they have yet to be tried on the GPU.

• Modifying the contents of the data structures we presented can be very dif-

ficult, since an insertion failure requires rebuilding the whole structure from

scratch. We offset this by providing fast constructions, allowing the table to

be rebuilt quickly with new items. In general this is a failing of many GPU

data structures, such as spatial data structures like k-d trees or bounding

volume hierarchies. Designing complex incremental parallel data structures

for GPUs remains an active and interesting problem.

• We do not know how to handle input which exceeds the memory capacity of

a single graphics card. Extending the algorithm to handle out-of-core input

and multiple graphics cards is a challenging problem.

• Different applications also require different hash table features. The most

efficient implementation of multiple-value hashing is not necessarily going

to be the most efficient implementation when the multiple values can be

aggregated (i.e. by counting or averaging), and yet another implementation

might be more efficient when unique keys are guaranteed. A standard data

structures library may have to include all of these specialized variants, and

perhaps others.
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